
Learning to Generate and Edit Hairstyles

Weidong Yin1, Yanwei Fu1,†, Yiqiang Ma1

Yu-Gang Jiang2, Tao Xiang3, Xiangyang Xue1,2
1School of Data Science, Fudan University; 2School of Computer Science, Fudan University;

3 Queen Mary University of London , † Corresponding author. Email: yanweifu@fudan.edu.cn

ABSTRACT
Modeling hairstyles for classi�cation, synthesis and image edit-
ing has many practical applications. However, existing hairstyle
datasets, such as the Beauty e-Expert dataset, are too small for
developing and evaluating computer vision models, especially the
recent deep generative models such as generative adversarial net-
work (GAN). In this paper, we contribute a new large-scale hairstyle
dataset called Hairstyle30k, which is composed of 30k images con-
taining 64 di�erent types of hairstyles. To enable automated gener-
ating and modifying hairstyles in images, we also propose a novel
GAN model termed Hairstyle GAN (H-GAN) which can be learned
e�ciently. Extensive experiments on the new dataset as well as
existing benchmark datasets demonstrate the e�ectiveness of pro-
posed H-GAN model.
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1 INTRODUCTION
Hairstyle can express one’s personalities, self-con�dence, and at-
titudes. It is thus an important aspect of personal appearance. A
computer vision model that enables recognition, synthesis, and
modi�cation of hairstyles in images is of great practical use. For ex-
ample, with such as model, customer can take a photo of him/herself
and then synthesize di�erent hairstyles before going to the hair-
dresser’s to make the most satisfactory one a reality. In addition, an
automated hairstyle recognition model can be used for recognizing
person’s identity for security applications.

Existing e�orts on hairstyle modeling have been focused on rec-
ommending the most suitable hairstyles [18], or interactively users’
editing [7, 22, 32]. However, there is no attempt so far to systemat-
ically study hairstyles in images and no model available that can
address various hairstyle modeling task in a comprehensive manner.
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One of the reasons is that there are large variations in hairstyles
and in order to model these variations, large-scale datasets are
needed. Unfortunately, such a large-scale hairstyle dataset does not
exist. In Multimedia and computer vision communities, hairstyles
are often labeled as attributes for face datasets. However, such
annotation is often crude, focusing mostly hair length and color.
On the other hand, existing specialized hairstyle datasets such as
Beauty e-Expert dataset [18] are too small to represent the diversity
of human hairstyles in the wild.

In this paper, we introduce the �rst large-scale hairstyle dataset
– Hairstyle30K to the community and hope that this will greatly
boost the research into hairstyle modeling. Images in the dataset
(see Fig. 1 for examples) are collected from the Web via search
engines using keywords corresponding a hairstyle ontology. This
results in 64 di�erent types of hairstyles in 30K images. On average,
each hairstyle class has around 480 images. The newly proposed
dataset is used to train the H-GAN model proposed in this paper.
Importantly, with 64 hairstyle classes, this is a �ne-grained dataset
presenting a challenging recognition task, as veri�ed by our exper-
iments.

Apart from releasing a new dataset, we also present a Hairstyle
Generative Adversarial Network (H-GAN) model for automati-
cally generating or modifying/editing hairstyles given an input
image. Our H-GAN has three components: an encoder-decoding
sub-network, a GAN and a recognition subnetwork. Particularly,
the encoder-decoding network is a variant of Variational Auto-
Encoders (VAE) [12]; the recognition sub-network shares the same
networks as the discriminator of GAN as in InfoGAN [5]. The
model is unique in that once trained, it can be used to perform
various tasks including recognition, synthesis and modi�cation.
Extensive experiments of our H-GAN algorithm on the proposed
dataset and other general-purpose benchmark datasets validate the
e�cacy of our model.
Contributions. We make several contributions in this paper. Firstly,
to study the hairstyle related problems, we contribute a new large-
scale hairstyle dataset – Hairstyle30k to the community. To the best
of our knowledge, this is the largest hairstyle dataset, especially in
terms of the number of hairstyle classes. Secondly, we present a
new deep generative model called – H-GAN which can e�ectively
and e�ciently generate and modify the hairstyles of person images.
Extensive experiments demonstrate that our H-GAN is superior to
a number of state-of-the-art alternative models.

2 RELATEDWORK
2.1 Image Editing and Synthesis
Editing image with interaction. Recent advances in interactive
image segmentation have signi�cantly simpli�ed the tasks of object
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Figure 1: Examples of our Hairstyle30K dataset with corresponding hairstyle class labels.

segmentations [3, 4, 16, 25, 38]. Existing interactive segmentation
approaches such as lazy snapping [16] and grab cut [25] as well as
recent Generative Adversarial Networks (GAN) related methods
[44] enable the users to achieve good quality object cutout with
a few of strokes. In comparison, the existing e�orts on hairstyles
and makeup editing are very primitive [7, 22, 32]. In theory, these
interactive image editing works can be used for editing hairstyles.
However, it can be tedious and time-consuming to manually modify
hairstyles via user-interaction. Fully automated image editing thus
becomes desirable.
Automated image editing. There are some recent e�orts on fully
automated images editing [10, 24, 28, 43]. In particular, two recent
studies [24, 28] propose approaches to modify the attribute of facial
images. The proposed H-GAN is an automated image editing model
but focuses on hairstyle images.
Image Editing and Synthesis. Our work is also related to previ-
ous work on joint image editing and synthesis [10, 14, 24, 28, 39].
Shen et al. [28] manipulated the facial attributes by a GAN-based
image transformation networks; nevertheless each trained model
in [28] can only modify one special type of facial attribute im-
ages. In contrast, one trained model of our H-GAN can modify all
hairstyles presented in the training data. In model proposed by
[39] , conditional variational auto-encoder is used to generate facial
images of di�erent attributes; due to the lack of the adversarial loss,
the generative images are often blurry. In VAEGAN[14], VAE is
combined with GAN to generate more realistic image. However,
compared to our H−GAN, it does not use attribute information and
modi�cation is achieved by calculating r̈esidual attribute vector̈.
The main di�erence between VAEGAN and H_GAN is thus the
fact that we add attribute information explicitly into the generator
so that we can specify di�erent attributes that we want to change.
Also we introduce a recognition network to maximize the mutual

information between attributes and generated images to generate
images with speci�ed attributes.

2.2 Attribute Analysis
Attribute-based people search. Hairstyles can be considered as
a special type of person attributes. Such attributes can be used in
the applications of surveillance environments, including but not
limited in attribute-based people search [29, 34, 36] and person
re-identi�cation [15, 21, 31, 42]. Recent studies on person attributes
are focused on clothing. These include clothes recognition [37],
clothing parsing [17] as well as clothing retrieval [2, 41]. The study
presented in this paper complements the existing clothing oriented
attribute analysis.
Face attribute analysis. It is another important research topic
related to our hairstyle analysis. Facial attribute analysis was �rst
studied by Kumar et al. [13]. In terms of di�erent visual features
and distinctive learning paradigm, facial attribute analysis has been
developed into three categories: (1) the methods using hand-crafted
visual features [13], such as SIFT [20] and LBP [23]; (2) the meth-
ods utilizing the recent deep features [19, 36]; and (3) multi-task
methods for learning facial attribute [1, 6, 26].

3 DATASET COLLECTION
Our hairstyle30k dataset is designed for studying the problem of
hairstyle classi�cation as well as other hairstyle related tasks includ-
ing synthesis and editing. To construct the dataset, we had down-
loaded more than 1 million images using various web search engines
(Google, Flicker, and Bing, etc) with hairstyle related search words,
e.g. Beehive hairstyle. The full set of class names of hairstyles are
listed in Fig. 1. The initial downloaded images were �rstly �ltered
by face detection algorithm. We subsequently pruned some irrele-
vant or erroneous images which has neither faces nor hairstyles. We
then manually �ltered out the irrelevant images for some hairstyles



Learning to Generate and Edit Hairstyles Conference’17, July 2017, Washington, DC, USA

that come without faces, e.g., Ducktail. We carefully annotated the
pruned images and classi�ed them into di�erent hairstyle classes.
Finally, we obtained 30k images with 41 types of male hairstyles and
42 types of female hairstyles. Among them, 19 kinds of hairstyle
have both male and female versions. Thus totally, the dataset has
64 di�erent types of hairstyles.

3.1 Statistics
The number of images of each hairstyle class are varied in term
of how popular this hairstyle is. In general, similar to most object
classi�cation dataset [33], we also observe a long-tailed distribution
of the number of hairstyle instances over classes as illustrated in
Fig. 2. On average, each hairstyle has around 480 images.

3.2 Uniqueness
Existing publicly available datasets for academic research either
have too few image (e.g., the Beauty e-Experts dataset); or too
few hairstyle classes (e.g., the CelebA dataset). Speci�cally, The
Beauty e-Expert dataset [18] has only 1505 female �gures in distinct
fashions; in contrast, our hairstyle dataset has around 30K instances.
The general-purpose face dataset CelebA [19] has around 200K
celebrity �gures with 40 annotated attributes. Nevertheless, in
CelebA, only very few and very simple hairstyles are labeled as
the attributes, e.g., wavy hair. Generally, the targets of our dataset
is also di�erent from CelebA, since ours is a benchmark dataset
for recognizing di�erent hairstyles; and the images within each
hairstyle class can cover large pose variations and background
clutter. Importantly, The images of the same person with di�erent
hairstyles should be categorized into di�erent hairstyle classes.

3.3 Applications
The datasets can be used to develop di�erent applications. Specif-
ically, the task of recognizing di�erent hairstyles belongs to the
category of �ne-grained classi�cation, which is an active and yet
very challenging research topic in the multimedia community, e.g.
[11, 35]. Potentially, this dataset can serve as the benchmark dataset
for many real-world applications and tasks such as hairstyle re-
trieval and recommendation systems [18], and the research of rec-
ognizing �ne-grained hairstyles, and automatically generating and
changing the hairstyles. In this next section, we propose a frame-
work that enables three tasks, i.e. recognition, generation and
modi�cation of hairstyles, by using a single model.

4 HAIRSTYLE GAN (H-GAN)
4.1 Background
GAN [8] targets at learning to discriminate real data samples from
generated samples by training the generator network G to fool the
discriminator network D. It is formulated to optimize the following
objective functions,

min
G

max
D
LGAN = Ex∼pdata (x ) [logD (x)] (1)

+Ez∼ppr ior (z) [log (1 − D (G (z)))] ,

where pdata (x) and ppr ior (z) are the distributions of real data and
Gaussian prior N (0, 1). The training process iteratively updates

the parameters of G and D with the loss functions LD = LGAN
and LG = −LGAN for generator and discriminator respectively.
The generator can draw a sample z ∼ ppr ior (z) = N (0, 1) and
utilized the generator network G, i.e., G(z) to generate an image.
InfoGAN [5] further models the noise variable z in Eq (1) by de-
composing it into a latent representationy and incompressible noise
z. To ensure no loss information of latent representation in the gen-
eration, InfoGAN maximizes the mutual information I (y;G (z,y))
as the recognition loss,

Lrд = −Ex∼G(z,y)

[
Ey∼pdata (y |x ) [logQ(y | x)]

]
(2)

where Q (y | x) is an approximation of the posterior pdata (y | x).
InfoGAN can unsupervisedly learn disentangled, interpretable and
meaningful representations with the loss function of the generator
G as LGInf oGAN = LG − Lrд

VAEGAN [14] integrates the Variational Auto-Encoders (VAE) into
GAN. It uses the feature-wise errors to replace the element-wise
errors of original GAN in the data space. The VAE part encodes the
data sample x to latent representation z: z ∼ Enc (x) = penc (z | x)
and decodes the z back to data space: x̃ ∼ Dec (x | z) = pdec (x | z)
by two loss functions: (1) the regularization of the latent space
Lpr ior = KL

(
qenc (z | x) ‖ ppr ior (z)

)
, where qenc (z | x) is the

approximation to the true posterior pdec (z | x); (2) the reconstruc-
tion error

L
Dl
r econ = −Eqenc (z |x ) [logpdec (Dl (x) | z)] (3)

where Dl (x) is hidden representation of l − th layer of the dis-
criminator. Thus the loss functions of VAEGAN are updated as
LD = LGAN , Ldec = LG = −LGAN +λ ·L

Dl
r econ and the encoder

Lenc = Lpr ior + L
Dl
r econ , where λ is the coe�cient. However the

latent representation z is unsupervised learned and not explicitly
associated with any nameable attributes.
CVAE [30, 39] is short for the conditional VAE. CVAE introduces
an independent attribute y to control the generating process of x
by sampling from p (x | y, z); where p (y, z) = p (y)p (z).
The encoder and decoder networks are thus z ∼ Enc (x) = qenc (z | x)
and x̃ ∼ Dec (z,y) = pdec (x | z,y). The variable y is introduced
to control the generate process of x by sampling from p (x | y, z);
where p (y, z) = p (y)p (z). Nevertheless, y is still sampled from
data, but not directly optimized and learned from the data.

4.2 Hairstyle GAN (H-GAN)
Hairstyle GAN model is formulated for generating and modifying
hairstyles in a single framework. Particularly, besides the input
noise z in GAN, we utilize the independent hairstyle variables y of
each image x , i.e. y ∼ pdata (y | x). Mathematically, we have i.e.,
p (y, z) = p (y)p (z).

As overviewed in Fig. 3, the network of H-GAN has three compo-
nents: an encoder-decoding sub-network, a GAN sub-network and a
recognition sub-network. The network structure is explained in Tab.
1. The whole H-GAN network is trained together in an end-to-end
fashion. Once trained, the encoder-decoding sub-network enables
generating and changing hairstyles; the recognition sub-network
can be used for hairstyle classi�cation. Note that the recognition
sub-network and discriminator of GAN share the same network
structures except the last softmax classi�cation layer, since both
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Figure 2: The statistics of the hair-style Dataset. In the X-axis, we list the hairstyles. The number of pictures of each hairstyle
class are compared in Y-axis. We use three color attributes to annotate each hairstyle: red and green colors indicate the
hairstyle for male only and female only respectively. The blue color means the hairstyle both for male and female.

Figure 3: Overview of our H-GAN.

sub-networks are assigned the classi�cation task with the same
input. The loss functions of the generator GH−GAN , discriminator
DH−GAN , encoder and decoder are thus updated as,

LGH−GAN = LG + λ1
(
Lrдz + Lrдy−G

)
+ λ2L

Dl
r econ (4)

LDH−GAN = LD +
(
Lrдy−D + Lrдz

)
(5)

Lenc = LVAE = Lpr ior + L
Dl
r econ (6)

Ldec = LGH−GAN (7)

where λ1 and λ2 are the weight of corresponding term; The recon-
struction loss of Eq (3) is updated as

L
Dl
r econ = −Ez∼penc (z |x ),y∼pdata (y |x ) [logpdec (Dl (x) | z,y)] (8)

where Dl (x) is the hidden representation of l − th layer of the
discriminator. It measures the loss of reconstructing generated
images by sampling the z. Lrдz is the recognition loss on z, which
is de�ned as

Lrдz = −Ex∼pdata (x ),z∼penc (z |x ) [log (Q (z | x))] (9)
−Ex∼pdec (x |z,y),y∼pdata (y |x ),z∼penc (z |x ) [log (Q (z | x))]
−Ex∼pdec (x |y,z),y∼pdata (y),z∼ppr ior (z) [log (Q (z | x))]
−Ex∼pdec (x |z,y),y∼pdata (y),z∼penc (z |x ) [log (Q (z | x))] ,

where the �rst term measures the loss of predicting errors on real
data; and rest three terms are the loss functions on generated data.
Q (·) is an approximation of the corresponding posterior data distri-
bution. penc (zla | x) is the distribution of z given x parameterized
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Encoder (128 × 128)† Decoder (128 × 128)† Discrim/RecogA

64@C (6 × 6) | y | +256 FC 64@C(6 × 6)

128@C(4×4) 8064FC -> 128@C(4 × 4)4 × 4 × 7 × 72 FC
256@C(4×4) 288@DeC(3 × 3) 128@C(4 × 4)
256@C(4×4) 216@DeC(3 × 3) 256@C(4 × 4)
256 × 2 FC c 144@DeC(5 × 5) 1 FC/256+ | y | FC

72@DeC(5 × 5)
3@DeC(6 × 6)

Table 1: The details of networks. Stride is 2 for all layers. C
and Dec indicate the convolutional and deconvolutional �l-
ter individually. 64@C (4 × 4)means 64 convolutional �lters
with size 4 × 4. FC means the fully connected layer. The Dis-
criminator and Recognition networks share the same four
layers (the �rst four layers in the third column). The last
layer of Discriminator and Recognition networks are 1 and
256+ | y | neurons individually. Note that: (1) † and A indi-
cate the activation of ReLU and Leaky ReLU (ratio: 0.2) for
the corresponding networks. (2)c indicates the reparame-
terization trick [12]; speci�cally, we take z ∼ N (µz ,σz ); and
256 and 256 neurons to regress µ and σ respectively. On de-
coding part, z = µ+ϵσ , ϵ ∼ N (0, 1). (3) | y |means the number
of hairstyles. (4) -> denotes the reshape operation.

by the encoder network; pdata (y) is the data distribution of y on
real data; pdata (y | x) is the data distribution of y given x on the
real data; pdata (x) is the data distribution of x on the real data;
ppr ior (z) is the prior distribution of z and we use the Gaussian dis-
tributionN (0, 1); pdec (x | z,y) is the distribution of x given z and
y, and the distribution is parameterized by the decoder network;
penc (z | x) is the distribution of z given x and the distribution
parameterized by the encoder network [40].
For the recognition loss ony, the loss functions for the discriminator
and generator are de�ned as,

Lrдy−D =−Ex∼pdata (x ),y∼pdata (y |x ) [log (Q (y | x))] (10)

Lrдy−G = −Ex∼pdec (x |y,z),z∼penc (z |x ),y∼pdata (y) [log (Q (y | x))]
−Ex∼pdec (x |y,z),z∼penc (z |x ),y∼pdata (y |x ) [log (Q (y | x))]
−Ex∼pdec (x |y,z),z∼ppr ior (z),y∼pdata (y |x ) [log (Q (y | x))]

(11)
where for the discriminatorLrдy−D , only the real data is used to
train the model since the quality of generated data in the training
process is unreliable.
Training algorithms. The training of H-GAN is optimized by
many epochs; each epoch is divided into three stages, namely,
(1) Learning image reconstruction: we update the encoder-decoder
subnetwork and learn to reconstruct the image given the desired
hairstyle. Speci�cally, we sample a batch of images x ∼ pdata (x)
and hairstyley ∼ pdata (y |x), z ∼ penc (z | x) to update the encoder,
and decoder, by minimizing Lenc and Ldec individually.
(2) Learning image modi�cation: Given an image x and desired
hairstyle y, this stage learns of modifying image x with the y
hairstyle. In particular, we �rstly sample a batch of images x ∼

pdata (x) and the hairstyle y ∼ pdata (y), z ∼ penc (z | x), to update
the decoder and discriminator by minimizing Ldec and LDSL−GAN

respectively.
(3) Learning image generation: We sample a batch of latent vectors
z ∼ ppr ior (z) and the hairstyle y ∼ pdata (y); to minimize the
decoder Ldec and discriminator with LDSL−GAN iteratively.

4.3 Generation and modi�cation of hairstyles
Our H-GAN can be used to perform both tasks.
Generation of hairstyles. To generate a new hairstyle image, we
can sample z from ppr ior (z) and setting y to any desired hairstyle.
The image can be generated as x ′ ∼ G (z,y) .
Modi�cation of hairstyles. For e�cient image editing, we pro-
posed to utilize the residual di�erences between the desired hairstyle
and all hairstyles. The resultant hairstyle modi�cation algorithm
takes two steps. (1) Given an image x and the desired hairstyle
ydesir ed , we �rst sample z ∼ penc (z | x). (2) We employ the en-
coder to compute the corresponding z of all images. We compute
the

z̄ydesir ed = Ez∼penc (z |x ),x∼p(x |ydesir ed ) [z] (12)

z̄ = Ez∼penc (z |x ),x∼pdata (x ) [z] (13)
where z̄ydesir ed is the mean vector of images with the desired
hairstyle; and z̄ is the mean vector for all the images. We then
compute the 4 = z̄ydesir ed − z̄; and the modi�ed image can be
generated by x ′ ∼ pdec (x | z + 4,ydesir ed ).

5 EXPERIMENTS
5.1 Experimental setup
Dataset. We conduct the experiments on three datasets.
(1) Hairstyle30K is the newly proposed dataset in this paper. This
dataset has totally 30911 images of 64 di�erent �ne-grained male
and female hairstyles. On average, each hairstyle has 480 images.
(2) CelebA is a facial attribute dataset of approximately 200k images
of 10k identities [19]. Each image is annotated with 5 landmarks
(two eyes, the nose tips, the mouth corners) and binary labels of
40 attributes. Among all these attributes, 8 attributes are related to
hairstyle and thus can be used to evaluate our H-GAN algorithm.
(3) Male hairstyle dataset combines the male hairstyles from both
Hairstyle and CelebA dataset. Particularly we divide the male styles
into 6 di�erent male hairstyle classes, namely, bald, bang, curly,
long, undercut-short, and undercut-long. We re-annotate the images
from Hairstyle and CelebA dataset into these 6 categories. Totally,
this dataset has 38293 images, and each class on average contains
6382 images. Compare to the original Hairstyle30K dataset, this
dataset has much few classes but each class has much more samples
and su�ers less the class imbalance problem.
Evaluation. We employ several di�erent evaluation metrics to
evaluate our proposed dataset and H-GAN algorithm. (1) Classi-
�cation of hairstyles. We evaluate the tasks of the classi�cation
tasks of the Hairstyle30K dataset. Particularly, in each hairstyle
class, the images are equally sliced into two halves. 50% images are
used for training while the rest images are saved as the testing data.
The mean accuracy (i.e., the mean of the diagonal of the confusion
matrix) is employed as the metrics for evaluation due to the data



Conference’17, July 2017, Washington, DC, USA Yin et al.

RBF-SVM Random Forest Logistic Regression Neural Network
0

5

10

15

20

25

30

M
ea

n 
Ac

cu
ra

cy

Hairstyle

RBF-SVM Random Forest Logistic Regression Neural Network
0

10

20

30

40

50

60

M
ea

n 
Ac

cu
ra

cy

Male Hairstyle

Figure 4: The results of classi�cation on two hairstyle
datasets. The chance-level are 1.56% and 16.7% respectively
for the hairstyle30k and male hairstyle datasets respec-
tively.

Dataset H-GAN VAEGAN Attrb2img
Male hairstyle 2.28 2.26 2.31

CelebA 2.29 2.08 2.32
Table 2: Inception Scores on CelebA and Male hairstyle
datasets. The higher values, the better results.

imbalance between classes. The experiments are repeated for 10
round to reduce the variance. (2) Hairstyle generation. we employ to
evaluate the hairstyle generation, the inception scores [27] which
aims at measuring whether the varied images are generated and
whether the generated images contains meaningful objects. (3)
Modifying hairstyles. A user-study is carried out to evaluate the
e�ects of changing hairstyles by di�erent methods.
Implementation details. Our model is implemented based on the
tensor �ow platform and our model get converged in 4-5 hours on
Male hairstyle dataset on GeForce GTX 1080; and our model needs
around 8GB GPU memory. We use the Adam optimizer to train the
generator and the discriminator is trained by the Rmsprop optimizer
with a mini-batch size of 64. The learning rate is set as 1e − 4 and
2e − 4 for generator/encoder and discriminator respectively. The
input size of images is 128 × 128. Our H-GAN is trained by 10
epochs, and each epoch has 5000 iterations.

5.2 Classi�cation of Hairstyles
To investigate the classi�cation performance of some baselines,
we extract the deep features of all the images by Resnet-50 net
[9]. On the Hairstyle30k and Male hairstyle datasets, we compare
several baselines: (1) SVM: a SVM with RBF kernel is trained for the
classi�cation. (2) Random Forest: 100 estimators are used and the
minimum number of samples required to split an internal node is
set as 10. (3) Logistic Regression (LR): a LR classi�er is also learned
for classi�cation; (4) Deep neural network (DNN): we use two fully
connected layers with the 1024 and 512 neurons respectively. We
use 10-fold cross validation to estimate the key parameters of each
method.

The results are compared in Fig. 4. The mean accuracy of each
method is reported. We observe that on Hairstyle30k , SVM can
beat the other three methods and achieves the accuracy of 29.1%.
This reveals the challenging nature of our dataset. Note that the
second best result 26.8% is obtained by DNN method, partly due to

Figure 5: Qualitative results on the hairstyle generation task
using the Male Hairstyle dataset.

the insu�cient training instances for some rare types of hairstyles
as shown in Fig. 2. In contrast, the male hairstyle dataset has 6
types of hairstyles, and each hairstyle averagely has more than 3000
images. Thus on this dataset, the DNN achieves the best results on
Male hairstyle dataset and outperforms the SVM results by 2.5%.

5.3 Hairstyle generation
Competitors. We compare various open-source methods on this
task, including VAEGAN [14], and Attrb2img [39]. Attrb2img is an
advanced version of CVAE. To make the results more comparable,
all the methods are trained with the same experimental settings.
We conduct the generation of hairstyles on both the CelebA and
male hairstyle datasets.
The results of inception scores on CelebA and Male hairstyle dataset
are compared and shown in Fig. 2. Both the inception scores of the
generated and reconstructed images are compared. Totally 3000
images are generated for each method. Salimans et al. [27] proposed
the inception score for evaluating image generation quality. Higher
inception scores indicate better visual quality of samples generated.
To make a fair comparison, we make all three methods to generate
the same hairstyle.
As we can see from Table 2, our H-GAN achieves a 2.28 inception
score, outperforming the VAEGAN on both datasets. This validates
that images generated using our H-GAN have better visual quality
than those of VAEGAN. Table 2 also shows that the inception score
of Attrb2img is marginally higher than ours. After a close inspection
of the qualitative results generated on CelebA (see Fig. 7) and Male
dataset (see Fig. 5), we conclude that our H-GAN’s results are still
better than those of Attrb2img in term of the resolution, and clarity
of generated hairs. Particularly, the images generated by Attrb2img
has very blurred hairstyles but sharp human faces (which have
contributed to the high inception scores).
Qualitative results. Some qualitative examples of the generated
images of VAEGAN [14], Attrb2img [39] and H-GAN are illustrated
in Fig. 7 and Fig. 5 for CelebA and Male hairstyle respectively. The
generation results of Attrb2img show again sharp human faces and
yet blurred hairstyles. The VAEGAN can generated hairstyles with
�ne details. Nevertheless, the overall quality of generated images
of VAEGAN is worse than our H-GAN. For example, the second
image of the VAEGAN results contains a very distorted face.
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Figure 6: Modi�cation of hairstyles on Male hairstyle dataset.

Figure 7: Qualitative results of the generation on CelebA
dataset.

5.4 Modifying hairstyles
Competitors. We compare various open source methods on edit-
ing hairstyles, including Attrib2img [39], and VAEGAN [14]. Though
Attrb2img is not designed for modifying the images, we can actu-
ally employ the “attribute-conditioned image progression” strategy
suggested in [39] to interpolate one type of hairstyle gradually
changing the values along the dimension of hairstyle. The same
experimental settings are used for all the experiments.
User-study experiments. Since the task of modifying hairstyles
is essentially only modifying some parts of images, we notice that
the modi�ed images often have almost similar visual quality and
thus the inception score used in generation task is not suitable as
the evaluation metrics any more in this task. Instead, a user study
as suggested in [40] is employed to compare these methods. Partic-
ularly, ten participants unaware of the project goals are invited for
the user study. Given each image and one target hairstyle, these

Figure 8: Results of modifying hairstyles on the CelebA
dataset. Each column indicates modifying the hairstyles for
one method.

three methods are utilized to modify the hairstyle of images and we
can obtain two images. Totally 100 images are randomly sampled
from the CelebA and Male hairstyle dataset respectively, and we
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Metric Saliency Quality Similarity Guess
Attrb2img 3.40 4.40 4.50 40.0%
VAEGAN 4.15 4.23 4.12 65.0%
H-GAN 4.40 4.40 4.65 70.0%

Table 3: The user-study of modi�cation of user-de�ned at-
tributes. The “Guess” results are reported as the accuracy of
guessing.

change the hairstyles of sampled images. The participants have
been required to compare the modi�ed images with the original
image and give their judgment on a �ve-point scale system from
the less to the most likely by answering the following questions?
(1) Saliency: how salient is the hairstyle has been changed in the
image? (2) Quality: How is the overall quality of image modi�ed?
(3) Identity: how much degree do you think the modi�ed image
and original image is of the same person? (4) Guess: Additionally,
a guessing game is introduced as the fourth metrics. Given a pair
of modi�ed and original images, the participants will be asked to
guess which hairstyle has been modi�ed from the four candidate
choices, which are randomly sampled from the hairstyle names and
of course, the correct hairstyle name should be included.
Quantitative results. We list the user-study results in Tab. 3. On
all metrics, our H-GAN beats the other compared methods. Thus
we can draw the conclusion that our H-GAN can more e�ectively
modify the hairstyles whilst keeping the person’s identity. Interest-
ingly, even though Attrb2img has relative good visual quality, the
strategy of modifying hairstyle employed by Attrb2img is relative
less e�cient and the scores “Guess” is signi�cantly lower than the
other two methods.
Qualitative results. Some visualization results are compared in
Fig. 8 and Fig. 6. Each row is corresponding to one type of hairstyle.
Each column indicates the results of one method. We highlight that
in general, the results of our H-GAN are always better than or at
least comparable to those of the other two methods. The results of
Attrb2img still su�er from the problem of very blurred hair. We also
notice that in Fig. 8, the hairstyle of Gray hair is highly correlated
with the “age” and “eyeglasses” attribute in CelebA, since usually
the senior person may wear glasses and have gray hair.

6 CONCLUSION
In this paper, we aim to present a comprehensive study on various
hairstyle-related problems including classi�cation, generation and
modi�cation of hairstyles. To promote the study of this topical issue,
we introduce a new large-scale hairstyle dataset – Hairstyle30k
with extensive hairstyle annotation. To automatically generate
and change the hairstyle, we also propose a new – H-GAN model.
Extensive experiments on several benchmark datasets had validated
the e�ectiveness of the proposed H-GAN over the existing methods.
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