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Abstract

For the past decade computer vision research has achieved increasing success in visual recog-

nition including object detection and video classification. Nevertheless, these achievements still

cannot meet the urgent needs of image and video understanding. The recently rapid development

of social media sharing has created a huge demand for automatic media classification and anno-

tation techniques. In particular, these types of media data usually contain very complex social

activities of a group of people (e.g. YouTube video of a wedding reception) and are captured

by consumer devices with poor visual quality. Thus it is extremely challenging to automatically

understand such a high number of complex image and video categories, especially when these

categories have never been seen before.

One way to understand categories with no or few examples is by transfer learning which

transfers knowledge across related domains, tasks, or distributions. In particular, recently life-

long learning has become popular which aims at transferring information to tasks without any

observed data. In computer vision, transfer learning often takes the form of attribute learning.

The key underpinning idea of attribute learning is to exploit transfer learning via an intermediate-

level semantic representations – attributes. The semantic attributes are most commonly used as a

semantically meaningful bridge between low feature data and higher level class concepts, since

they can be used both descriptively (e.g., ’has legs’) and discriminatively (e.g., ’cats have it but

dogs do not’). Previous works propose many different attribute learning models for image and

video understanding. However, there are several intrinsic limitations and problems that exist in

previous attribute learning work. Such limitations discussed in this thesis include limitations of

user-defined attributes, projection domain-shift problems, prototype sparsity problems, inability

to combine multiple semantic representations and noisy annotations of relative attributes. To

tackle these limitations, this thesis explores attribute learning on image and video understanding

from the following three aspects.

Firstly to break the limitations of user-defined attributes, a framework for learning latent

attributes is present for automatic classification and annotation of unstructured group social ac-

tivity in videos, which enables the tasks of attribute learning for understanding complex mul-

timedia data with sparse and incomplete labels. We investigate the learning of latent attributes
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for content-based understanding, which aims to model and predict classes and tags relevant to

objects, sounds and events – anything likely to be used by humans to describe or search for

media. Secondly, we propose the framework of transductive multi-view embedding hypergraph

label propagation and solve three inherent limitations of most previous attribute learning work,

i.e., the projection domain shift problems, the prototype sparsity problems and the inability to

combine multiple semantic representations. We explore the manifold structure of the data dis-

tributions of different views projected onto the same embedding space via label propagation on

a graph. Thirdly a novel framework for robust learning is presented to effectively learn relative

attributes from the extremely noisy and sparse annotations. Relative attributes are increasingly

learned from pairwise comparisons collected via crowdsourcing tools which are more economic

and scalable than the conventional laboratory based data annotation. However, a major challenge

for taking a crowdsourcing strategy is the detection and pruning of outliers. We thus propose

a principled way to identify annotation outliers by formulating the relative attribute prediction

task as a unified robust learning to rank problem, tackling both the outlier detection and relative

attribute prediction tasks jointly.

In summary, this thesis studies and solves the key challenges and limitations of attribute

learning in image/video understanding. We show the benefits of solving these challenges and

limitations in our approach which thus achieves better performance than previous methods.
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Chapter 1

Introduction

With the rapid developments of devices capable of digital media capture, vast volumes of multi-

media data are being uploaded and shared on social media platforms (e.g. YouTube and Flickr).

For example, 100 hours of video are uploaded every minute on YouTube1. Managing this grow-

ing volume of data demands effective techniques for automatic media understanding. Such au-

tomatic techniques are important for content-based image and video understanding in order to

enable effective indexing, search, retrieval, filtering and recommendation of multimedia content

from the vast quantity of image and video data.

Generally, conventional supervised learning approaches are feasible for the benchmark datasets

of tens or hundreds of categories of images and videos and they work in this way (in Figure 1.1):

the powerful low-level features such as SIFT [Low04], HoG [BZM07b] and recent deep fea-

tures [DJV+14, KSH12, SEZ+14] are extracted from all examples, and modern machine learn-

ing classifiers such as support vector machines [CL01, Lam09] or random forest [BZM07a] are

learned from an amount of well-labelled training instances. Thus to successfully identify one par-

ticular category, the supervised classifier must learn the ’knowledge’ from the previous examples

in the same class.

Nevertheless it is still a significant challenge to develop an automatic system for large-scale

image and video understanding using a conventional supervised learning based framework (see

Figure 1.1). Especially, it is very expensive and even impossible to annotate the training exam-

ples in large-scale for all real-world categories. For example, there are at least 30000 human-

1http://www.youtube.com/t/faq
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Figure 1.1: Traditional supervised learning vs. attribute learning.

distinguishable basic object classes and much more subordinate ones, e.g. different breeds of

dogs [KJYFF11] and birds [WBW+11]. Humans can also create new categories dynamically

from single examples or solely based on high-level description, e.g., the videos of “Germany

World Cup winner celebrations 2014”. Such exponential combinations of relevant categorisation

tasks, if labelled and trained in the conventional supervised learning ways, needs the collection

of millions or billions of training instances. Furthermore, the conventional supervised learning

methods cannot identify the categories or sub-categories for which there is no positive training

example. For example, the conventional supervised video classifier of “Germany World Cup

winner celebrations 2014” cannot be trained until some positive video samples are available and

shared after July 2014 when Germany finally won the football match over Argentina.

Different from the conventional supervised learning framework, humans have the ability of

“learning to learn” [Thr96]. Specifically, we can exploit shared properties and characteristics

among categories and resort to human linguistic knowledge bases in the form of written text. This

inspires a recent flourish of research into attribute learning for image and video understanding.

Still taking the video classification for the event “Germany World Cup winner celebrations 2014”

as an example. Our strategy would be to construct the classifiers and transfer the knowledge from

the previous well-labelled video examples like “ FC Bayern Munich - Champions of Europe

2013” to help identify the novel unseen class. This idea inspires attribute learning for image and

video understanding in this thesis, which belongs to transfer learning.

Transfer learning refers to the problem of applying the knowledge learned in one or more

auxuliary tasks/domains/sources to develop an effective hypothesis for a target task/domain. In
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general, transfer learning emphasizes the transfer of knowledge across domains, tasks, and dis-

tributions that are similar but not the same.

Research in transfer learning continued after 1995 under a variety of names: learning to

learn, life-long learning, knowledge transfer, transfer learning, multiple task learning, knowledge

consolidation, context-sensitive learning, knowledge-based inductive bias, meta-learning, and

incremental, cumulative, and continual learning [PY10]. In this thesis, we follow Pentina et al.

[PL14] and use life-long learning to refer to the transfer learning with the settings of transfering

information to tasks for which no data have been observed so far. In general, life-long learning

invokes some of the most important questions:

• What is the best representation and method for transferring prior knowledge to a new task?

• How does the use of prior knowledge affect learning in the target task/domain?

• What is the nature of similarity or relatedness between tasks for the purposes of learning?

Can it be measured?

As one way of implementing transfer learning, attributes are the semantic-rich representations to

help bridge between low feature data and higher level class concepts. Attributes can be used both

descriptively (e.g., ’has legs’) and discriminatively (e.g., ’cats have it but dogs do not’). Such

properties of attributes in our approach can explicitly explain to us: which knowledge to transfer;

where of knowledge transfer, and why of difference knowledge sources and similarity measures

for knowledge transfer [RSS+10].

1.1 Attribute Learning for Image/Video Understanding

Different from the conventional supervised approaches in Figure 1.1, humans actually have very

different strategies for learning: for examples, when reading ’flightless birds living almost exclu-

sively in Antarctica’, we know it is penguin for certain even though we might have never seen a

penguin in our life. In cognitive science [Thr96], studies explain that humans achieve “learning

to learn” new concepts by extracting intermediate semantic representation or high-level descrip-

tions (i.e. flightless, bird, living in Antarctica) and transferring knowledge from known sources

(other bird classes, e.g. swan, canary, cockatoo and so on) to the unknown target (penguin).

That is the reason why humans are able to understand new concepts with no or only few training

samples.
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Recently, inspired by “learning to learn” in humans and to minimise the necessary labelled

training examples for supervised classifiers, researchers built attribute learning recognition mod-

els that are capable of classifying novel classes with no training example. In machine learning,

“learning to learn” is also referring as life-long learning2[PL14, Thr96, TM95]. In computer

vision, the task of classifying classes without any observed data is called zero-shot learning.

To enable such zero-shot learning algorithms, the key underpinning idea is to exploit transfer

learning via an intermediate-level semantic representation (e.g. attributes ) as a semantically

meaningful bridge between raw data and class concepts. In particular, such an idea is realised

by attribute learning [FHXG12, PP12, FEHF09, JWZ13, LNH13, LNH09, APHS13, LJLFF10,

LKS11, PG11a, PG11b, KPG12, FYH+14a, FHXG13, FYH+14b, FHXG14] in the computer

vision community.

The common attribute learning pipeline in most previous work [FHXG12, PP12, FEHF09,

JWZ13, LNH13, LNH09, APHS13, LJLFF10, LKS11, PG11a, PG11b, KPG12, FYH+14a, FHXG13,

FYH+14b, FHXG14] is shown in Figure 1.1. Two datasets with disjoint classes are consid-

ered: a labelled known auxiliary set (e.g. Zebra and Whale) where a semantic representation

is given for each data point, and a target dataset (e.g. Pig) to be classified with no labelled

instance and semantic representation. Such a semantic representation is assumed to be shared

between the auxiliary and target datasets. Specifically, apart from the class label, each auxiliary

data point is labelled by a semantic representation such as visual attributes [LNH09, FEHF09,

LKS11, FHXG13], and other semantic representations [MCCD13, FCS+13, SGS+13, RSS12].

A projection function, mapping low-level features to the semantic space, is learned from the

auxiliary dataset by either classification or regression models. Such a projection is then ap-

plied directly to map each unlabelled target class instance into the same semantic representation

space. Within this semantic space, a zero-shot classifier is pre-defined by “extra-knowledge” to

recognise all unseen instances. The two most popular zero-shot learning algorithms proposed

in [LNH13, LNH09] are Direct Attribute Prediction (DAP) and Indirect Attribute Prediction

(IAP). In particular, a single ‘prototype’ of each target class is specified in the semantic space.

Depending on the semantic space, this prototype can be an attribute annotation vector [LNH09]

or other semantic representation vector inferred from the target class name [FCS+13].

2it is related to domain adaptation which is to perform well on a new task for which only unlabeled or
very few labeled data samples are observed. Life-long learning, domain adaptation and zero-shot learning
all belong to transfer learning.
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1.2 Challenges and Motivations

The previous attribute learning pipeline makes a good start to help solve zero-shot learning prob-

lems. It targets image and video understanding and tries to help model and predict classes and

tags relevant to objects, sounds and events – anything likely to be used by humans to describe or

search for media. However, there are several challenges that exist in previous attribute learning

work that limits the performance on image and video understanding. This section briefly explains

such challenges.

1.2.1 Limitations of User-defined Attributes

Most previous work [LNH09, FEHF09, DFV11, FZ07, LNH13, KBBN09, PH12, YCF+13,

KPG12, MSN11, HSG11, FEH10, LKS11, PP12] relies on manually defined attributes. Such

attributes are usually defined by users or experts or extracted from concept ontoloy, e.g. Word-

Net [Mil95]. These attributes are annotated at class-level or instance-level by using crowd-

sourcing tools. Such user-defined attributes have been used for image and video understanding.

However, these user-defined attributes are neither flexible nor comprehensive enough to ex-

plore the complex multi-modal image and video data. Specifically, user-defined attributes come

from the knowledge of user experts or concept ontology and may be neither extendable nor dis-

crimintive enough to help understand complex multi-modal3 image and video data.

For example, consumer videos (e.g. home videos) [JYC+11] have the most common yet chal-

lenging types of video content – unstructured social group activity and these types of videos are

hard to be fully explained by user-defined attributes. The main challenge comes from the uncon-

strained space of objects, events and interactions which make such consumer videos intrinsically

very complex. Especially, this unconstrained domain gives rise to a space of possible content

concepts that is orders of magnitude greater than that typically addressed by most previous video

analysis work (e.g. human action recognition [LKS11]). It is thus impossible to exhaustively

make user-defined attributes for all these content concepts used for zero-shot learning tasks.

To sum up, the underlying challenges of the limitations of user-defined attributes can be

broadly characterised as sparsity, incompleteness and ambiguity of the annotations of user-

defined attributes.
3Here, multi-modal indicates different feature types and modalities for images and videos. For ex-

ample, image can be described by global features, local features, and deep features. Video content have
visual, audio and action information.



1.2. Challenges and Motivations 6

Annotations of user-defined attributes are sparse. Visual data covers a huge unconstrained

space of object, activity or event concepts, therefore requiring numerous tags to completely

annotate the underlying content. However the number of labelled training instances per

annotation of user-defined attributes is likely to be low. For example, consumer videos

shared on social media platforms only have 2.5 tags on average versus 9 tags in general

for YouTube videos [JYC+11]. Such tags can be taken as different types of user-defined

attributes.

Annotations of user-defined attributes are intrinsically incomplete. Since the space of visual

concepts is unconstrained, exhaustive manual annotation of examples for every user-defined

attribute is impractically expensive, even through mechanisms such as Amazon Mechan-

ical Turk (AMT) [SF08]. Previous studies have therefore focused on analyzing relatively

constrained spaces of visual content and hence annotation ontologies [LKS11]. However,

there are for example, around 30000 relevant object classes which are recognizable by hu-

mans [Bie87]. This means that any set of user-defined attributes will either be too small to

provide a complete vocabulary to describe general images and videos, or have insufficient

training data for every user-defined attributes.

Annotations of user-defined attributes are ambiguous. Ambiguity is relatively less studied in

previous work but a significant challenge for image and video understanding. Even for the

same image/video, subjective factors (e.g. cultural background) may lead to contradictory

and ambiguous annotations. A well-known example is that some countries take a nodding

head as “yes”, while others as “no”. This ambiguity of annotations of user-defined at-

tributes can be taken as label noise. Ambiguity also arises from the semantic gap between

annotations and raw data: semantically obvious annotations are not necessarily detectable

from low-level features; while the most useful annotations for a model may not be the most

semantically obvious ones that humans commonly provide. Finally, the weakly supervised

nature of annotation of user-defined attributes, and the multi-modality of the data are an-

other strong sources of ambiguity. For example, an annotation of the “clapping” attribute

comes with no information detailing where it was observed (temporally) in a video, or

whether it was only seen visually, only heard, or both seen and heard.
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1.2.2 Projection Domain-shift Problem

As shown in Figure 1.1, previous attribute learning pipelines can exploit knowledge transfer

via an intermediate-level semantic representation which is assumed to be shared between the

auxiliary/source dataset and the target/test dataset and re-used as a bridge between the source

and target domains for knowledge transfer.

However, there is an inherent limitation with this pipeline. We call it projection domain-

shift problem: Since two datasets have different and potentially unrelated classes, the underlying

data distributions of the classes differ, so do the ‘ideal’ projection functions between the low-

level feature space and the semantic spaces. Therefore, using the projection functions learned

from the auxiliary dataset/domain without any adaptation to the target dataset/domain causes an

unknown shift/bias.

This is further illustrated in Figure 1.2, both of Zebra (auxiliary) and Pig (target) classes in

Animal with Attribute (AwA) dataset [LNH09] share the same ‘hasTail’ semantic attribute, yet

with different visual appearance of their tails. Similarly, many other attributes of Pig are visu-

ally different from the corresponding attributes in the auxiliary classes. Figure 1.2(b) illustrates

the projection domain shift problem by plotting an 85D attribute space representation of image

feature projections and class prototypes: a large discrepancy between the Pig prototype and the

projections of its class member instances is seen, but not for Zebra. Such a discrepancy inherently

degrades the effectiveness of zero-shot learning of Pig class. To our knowledge, this problem has

neither been identified nor addressed in the zero-shot learning literature.
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1.2.3 Prototype Sparsity Problem

This problem refers to the fact that for each target class, we only have a single prototype which

is insufficient to fully represent what that class looks like. As shown in Figs. 1.2(b), there often

exists large intra-class variations and inter-class similarities. Consequently, even if the single

prototype is centered among its class members in the semantic representation space, existing

zero-shot learning classifiers still struggle to assign the correct class labels to these highly over-

lapped data points – one prototype per class simply is not enough to represent the intra-class

variability. This problem has never been explicitly identified although a partial solution exists

[RES13].

1.2.4 Inability to Combine Multiple Semantic Representations

In addition to these inherent problems, conventional approaches to zero-shot learning are also

limited in exploiting multiple intermediate semantic spaces/views, each of which may contain

complementary information – they are useful in distinguishing different classes in different ways.

In particular, while both visual attributes [LNH09, LNH13, FEHF09, LKS11, FHXG13] and

linguistic semantic representations such as word vectors [MCCD13, FCS+13, SGS+13] have

been independently exploited successfully, it remains unattempted and not straightforward to

exploit synergistically multiple semantic ‘views’. This is because they are often of very different

dimensions and types and each suffers from different domain shift effects discussed above. This

exploitation has to be transductive for zero-shot learning as only unlabelled data is available for

the target classes and the labelled auxiliary data cannot be used directly due to the projection

domain shift problem.

The problems discussed in Section 1.2.2, Section 1.2.3 and Section 1.2.4 are intertwined

with each other. For example, in the widely used DAP model shown in Figure 1.3, different

components of the model are affected by different problems and their negative effects aggregate

and degrade the performance of zero-shot learning.

1.2.5 Noisy Annotations of Relative Attributes

With the advance of the Internet technology, some crowdsourcing tools are employed to collect

a large volume of annotated attributes. Most user-defined attributes are binary, i.e. indicating

the presence/absence of certain properties in image or video instances/classes. This limits the

expressive power of attributes. For example, for some properties, there is not a clear case of
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Figure 1.3: Projection domain shift problem, prototype sparsity problem and the inability to

combine multiple semantic representations are tightly related and take negative effects in DAP

model [LNH09, LNH13].

having them or not; it is more about how much the entity has such properties, i.e. these properties

are continuous in nature. In other words, these binary attributes fail to capture more general

semantic information, e.g., describing the relative relationship of any two instances.

To tackle this problem, relative attributes are studied recently. Relative attributes [PG11b]

indicate the strength of the presence of certain visual properties (e.g. smiling, age for faces, and

naturalness for scene). Relative attributes are learned as a richer representation corresponding to

the strength of visual properties, and used in a number of tasks including visual recognition with

sparse data, interactive image search, and semi-supervised or active learning of visual categories.

In existing work [KPG12, GGR+13, JYF+13], crowdsourced pairwise comparisons of rela-

tive attributes are collected. Crowdsourcing tools such as Amazon Mechanical Turk (AMT) are

used to collect large-scale pairwise comparisons of relative attributes by asking participants to

compare two instances for one particular attribute. The annotation task is to select between a pair

of images or videos which one has more attributes. This is considered to be a much easier task

and results in more reliable annotations than traditional five-star annotations4. This labelling pro-

4The five-star annotation system is widely studied in Multimedia and Statistical communi-
ties [XXHY13, CWCL09a, WCCL13, Arr63]. It requires the annotators to directly assign an absolute
attribute value scaling from 1 to 5 (meaning weakest to strongest attribute) for each image/video instance.
It has been taken as an extremely hard task [WCCL13, CWCL09a], since different people may hold very
different understanding and judgement for the scale values.
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cess is more economic and scalable than the conventional laboratory-based pairwise annotations.

Nevertheless, unlike the well-controlled and well-qualified laboratory annotators, there are

many uncertainties in crowdsourcing scenarios including both diverse Internet annotators and the

un-controlled crowdsourcing labelling process itself. These uncertainties introduce much higher

ratios of noisy annotations than in laboratory annotation. These noisy annotations of relative

attributes also suffer from two aspects,

Sparsity the number of pairwise comparisons required is much bigger than that of directly anno-

tated relative attribute values due to n instances defining aO(n2) pairwise space; even with

crowdsourcing tools, the annotations will still be sparse, i.e. not all pairs are compared and

each pair is only compared a few times.

Outliers it is well known that crowdsourced data is greatly affected by noise and outliers [CB13,

WHG11, LHK13] which are caused by many different factors. As illustrated in Figure1.4(a),

different annotators will give contradictory preference between Monkey King and Cookie

monster due to different cultural and psychological factors. For example, if one annota-

tor likes the story of “Journal to West”, he/she would prefer Monkey King5. Ambiguous

comparisons or malicious/lazy annotators are also reasons for noise and outliers. For ex-

ample, the ambiguous smiling/crying left face in Figure1.4 (b) may bring noise/outlier

comparisons to crowdsourced annotations.

Recent studies [GGR+13, KPG12, JYF+13] employ crowdsourcing tools to collect pairwise

comparisons – relying on majority voting to prune the annotation outliers/errors. However, it is

only a greedy algorithm and the performance of outlier detection by majority voting suffers from

the sparsity problem.

1.3 Our Approach

In order to solve the limitations of user-defined attributes, we propose learning latent attributes by

a novel generative topic model. To tackle the projection domain shift problem, prototype sparsity

problem, and inability to combine multiple semantic representations, we learn a transductive

multi-view embedding and achieve recognition by multi-view hypergraph label propagation. For

noisy annotations of relative attributes, we propose an algorithm capable of robustly learning

relative attributes.
5This can be psychologically explained as halo effect.
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Figure 1.5: Problem context and semi-latent attribute space: (a) Learning a semi-latent attribute

space is applicable to various problem domains. (b) Representing data in terms of a semi-latent

attribute space partially defined by the user (solid axes), and partially learned by the model

(dashed axes). A novel class (dashed circle) may be defined in terms of both user-defined and

latent attributes.

1.3.1 Learning Latent Attributes

In order to break the limitations of user-defined attributes, we propose to learn latent attributes,

which enables the task of attribute learning for understanding complex multimedia data with

sparse and incomplete labels. In particular, our work can deal with the complex consumer videos

of social group activities, which are challenging and topical examples for learning latent at-

tributes because of their multi-modal content and complex and unstructured nature relative to the

density of user-defined attribute annotations. We thus investigate the learning of latent attributes

for content-based understanding, which aims to model and predict classes and tags relevant to

objects, sounds and events – anything likely to be used by humans to describe or search for

media.

One strategy to address the sparsity of user-defined attributes is via the exploitation of at-
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tributes between different classes. As mentioned before, attributes focus on describing an in-

stance (e.g., has legs) rather than naming it (e.g., is a dog), and they provide a semantically

meaningful bridge between raw data and higher level classes. The concept of attributes can be

traced back to the early work of intrinsic images [BT78], but attribute learning has been popu-

larized recently as a powerful approach for image and video understanding with sparse training

examples [LNH09, FEHF09, FEH10, PG11a, PHPM09]. Most such previous work have looked

at attributes as a solution to sparseness of user-defined attributes, but do focus on constrained

domains and single modalities, avoiding the bigger issues in intrinsic incompleteness and ambi-

guity.

To address these challenges, we introduce a new attribute learning framework (Figure 1.5)

which learns a unified semi-latent attribute space (Figure 1.5(b)). Latent attributes represent

all shared aspects of the data which are not explicitly included in users’ sparse and incomplete

annotations of user-defined attributes. These are complementary to user-defined attributes, and

discovered automatically by a model through joint learning of the semi-latent attribute space.

This learned space provides a mechanism for semantic feature reduction [PHPM09] from

the raw data in multiple modalities to a unified lower dimensional semantic attribute space (Fig-

ure 1.5(b)). The semi-latent space bridges the semantic gap with reduced dependency on the

completeness of the attribute ontology and accuracy of the training attribute labels. Figure 1.5(a)

highlights this property by putting our work in the context of various standard problems. Our

semi-latent attribute space consists of three types of attributes: user-defined (UD) attributes from

any prior concept ontology; latent class-conditional (CC) attributes [HLGX11] which are dis-

criminative for known classes; and latent generalized free (GF) attributes [HGX11a] which rep-

resent shared aspects not in the attribute ontology. Jointly learning this unified space is important

to ensure that latent CC and GF attributes represent un-modeled aspects of the data rather than

merely rediscovering user-defined attributes.

To learn the semi-latent attribute space, we propose a multi-modal latent attribute topic model

(M2LATM), building on probabilistic topic models [BNJ03, HLGX11]. M2LATM jointly learns

user-defined and latent attributes, providing an intuitive mechanism for bridging the semantic gap

and modeling sparse, incomplete and ambiguous labels. To learn the three types of attributes, the

model learns three corresponding sets of topics with different constraints. UD topics are con-

strained to one to one correspondence with attributes from the ontology. Latent CC topics are
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constrained to match the class label while latent GF topics are unconstrained. Multi-task classi-

fication, N-shot learning and zero-shot learning are performed in the learned semantic attribute

space. To make the learning and inference scalable, we exploit equivalence classes for scalability

by expressing our topic model in a “vocabulary” rather than “word” domain.

1.3.2 Transductive Multi-view Embedding

In order to solve the projection domain shift problem, prototype sparsity problem and the inability

to combine multiple semantic representation together, we propose a Transductive Multi-view

Embedding framework which has two major components: learning a transductive multi-view

embedding and recognition by Multi-view Hypergraph Label Propagation (TMV-HLP).

Learning a transductive multi-view embedding The first component solves the projection do-

main shift problem inherent to previous attribute learning pipelines and exploits multiple

semantic representations; each of which may contain complementary information. By

using such complementary information, such a transductive framework can solve the pro-

totype sparsity problem. Under our framework, each unlabelled instance from the target

classes is represented by multiple views: its low-level feature view and its (biased) pro-

jections in multiple semantic spaces (visual attribute space, word space and so on). We

introduce a multi-view semantic space alignment process to correlate different semantic

views and the low-level feature view by projecting them onto a latent embedding space

learned using multi-view Canonical Correlation Analysis (CCA) [GKIL13]. The objective

of learning this new embedding space is to transductively (using the unlabelled target data)

align the semantic views with each other, and with the low-level feature view to rectify

the projection domain shift and exploit their complementarity. Even with the proposed

transductive multi-view embedding framework, the prototype sparsity problem remains –

instead of one prototype per class, a handful are now available depending on how many

views are embedded, which are still sparse. Our solution to this problem is to explore

the manifold structure of the data distributions of different views projected onto the same

embedding space via label propagation on a graph. Thus, to solve it, we further present

TMV-HLP in the embedding space.

Transductive multi-view hypergraph label propagation (TMV-HLP) The core of our TMV-

HLP algorithm is a new distributed representation of graph structure termed a heteroge-
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neous hypergraph – instead of constructing hypergraphs independently in different views

(i.e. homogeneous hypergraphs), data points in different views are combined to compute

multi-view heterogeneous hypergraphs. This allows us to exploit the complementarity of

different semantic and low-level feature views, as well as the manifold structure of the tar-

get data to compensate for the impoverished supervision available in the form of the sparse

prototypes. Zero-shot learning is then performed by semi-supervised label propagation

from the prototypes to the target data points within and across the graphs.

By combining our transductive embedding framework and the TMV-HLP zero-shot recognition

algorithm, our approach seamlessly generalises when none (zero-shot), or few (N-shot) samples

of the target classes are available. Uniquely it can also synergistically exploit zero + N-shot

(i.e., both prototypes and labelled samples) learning. Furthermore, the proposed method enables

a number of novel cross-view annotation tasks including zero-shot class description and zero

attribute learning.

1.3.3 Robust Learning of Relative Attributes

In order to learn and predict the image/video relative attributes from their low-level features

and crowdsourced pairwise annotations, we propose the approach of robust learning of relative

attributes. We show that the proposed approach is a principled way of identifying annotation

outliers by formulating the whole task as a unified robust learning to rank problem which thus

jointly tackles both the outlier detection and relative prediction.

We propose a novel approach for predicting relative attributes from sparse and noisy pairwise

comparison data. In previous work, majority voting [GGR+13, JYF+13] or Huber-LASSO [XXHY13,

FTS12] are used for outlier detection of pairwise comparisons and followed by regression [GGR+13]

or learning to rank [JYF+13]. However, majority voting is a local and greedy algorithm for out-

lier detection. It needs lots of pairwise comparisons and cannot guarantee the performance of

outlier detection. Different from existing approaches, we formulate a unified robust learning to

rank framework to jointly solve both the outlier detection and the prediction of relative attributes.

Critically, instead of detecting outliers locally and independently at each pair by majority voting,

our outlier detection method operates globally, integrating all local pairwise comparisons to-

gether to minimise a cost that corresponds to global inconsistency of ranking order. This enables

us to identify outliers that receive majority votes and yet cause large global ranking inconsistency
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and thus should be removed. Furthermore, as a global method, only one comparison per pair is

required; therefore significantly reducing the data sparsity problem compared to the conventional

majority voting approach.

1.4 Contributions

The contributions of this thesis towards attribute learning for image and video understanding are

as follows,

1. We address the key limitation of user-defined attributes, i.e., attribute learning from sparse,

incomplete and ambiguous annotations of user-defined attributes. A semi-latent attribute

space is introduced and enables the use of as much or as little prior knowledge as available

from both user-defined and the two types of automatically discovered latent attributes. We

formulate a computationally tractable solution of this strategy via a novel and scalable topic

model. We also show how latent attributes computed by our framework can be utilised to

tackle a wide variety of learning tasks in the context of multimedia content understanding

including multi-task, label-noise, N-shot and surprisingly zero-shot learning.

2. For the first time we attempt to investigate and provide a solution to the projection domain

shift problem in zero-shot learning. A transductive multi-view embedding space is learned

that not only rectifies the projection shift, but also exploits the complementarity of multiple

semantic representations of visual data.

3. The prototype sparsity problem can also be tackled in our transductive multi-view embed-

ding framework. A novel transductive multi-view heterogeneous hypergraph label propa-

gation algorithm (TMV-HLP) is developed to improve both zero-shot and N-shot learning

tasks in the embedding space and overcome the prototype sparisity problem.

4. Our transductive multi-view embedding space enables the novel task: zero-shot annotation.

It includes zero-shot class description (inferring the semantic attribute description of a

novel class) and zero attribute learning (inferring the name of a novel class given a set of

attributes).

5. We propose a learning framework to robustly predict relative attributes. Such a frame-

work can learn relative attributes from noisy and sparse pairwise comparison data. For the

first time, the problems of detecting outliers and estimating the ranking score are solved
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jointly in our unified framework. Most importantly, from both theoretical and experimen-

tal aspects, we demonstrate that our method is superior to existing majority voting based

methods as well as statistical ranking based (e.g. huber-LASSO) methods.

6. The first unstructured multi-modal social activity attribute (USAA) dataset is contributed.

We manually annotated the groundtruth attributes for 8 semantic class videos, which are

birthday party, graduation party, music performance, non-music performance, parade, wed-

ding ceremony, wedding dance and wedding reception. We also define 69 multi-modal at-

tributes which can be broken down into five broad classes: actions, objects, scenes, sounds,

and camera movement. We tried our best to exhaustively define every conceivable attribute

for this dataset, to make a benchmark for unstructured social video classification and an-

notation. Such exhaustive annotations give the freedom to hold out various subsets and

learn on the others in order to quantify the effect of annotation density and biases on a

given algorithm. Thus this dataset is of great value to computer vision community. We

will further discuss the USAA dataset in Chapter 2.1.6.

1.5 Outline

This thesis is organised into the following chapters,

Chapter 2 presents the literature review on various existing attribute learning methods in com-

puter vision, summarising the datasets used in the thesis, and related work in machine

learning used in this thesis.

Chapter 3 provides detailed explanations of the learning latent-attribute framework. It shows

that our framework can jointly learn multi-modal user-defined and latent attributes that

enable automatic video classification and annotation of unstructured group social activity

in videos.

Chapter 4 explains the transductive multi-view embedding frameworks. Transductive multi-

view embedding zero-shot learning has two major components, i.e., learning a transduc-

tive multi-view embedding and recognition by Multi-view Hypergraph Label Propagation

(TMV-HLP). It can be used to solve the projection domain shift problems, prototype spar-

sity problems and the inability to combine multiple semantic views.
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Chapter 5 presents novel framework for robust learning of relative attributes from noisy crowd-

sourced data. We show that the presented framework can effectively identify outliers for

robust relative attribute learning with extremely noisy and sparse annotations.

Chapter 6 provides conclusions and suggests a number of areas to be pursued in the future.
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Chapter 2

Literature Review

In this chapter, we review some topics related to attribute learning on image and video under-

standing. Firstly, we briefly look at previous attribute learning work in computer vision com-

munity in Section 2.1; Secondly, Section 2.2 talks about some other semantic representations

beyond attributes. Thirdly, the machine learning approaches which are related to the algorithms

in this thesis are reviewed in Section 2.3. Finally, we summarize the whole chapter in Section

2.4.

2.1 Attribute Learning in Computer Vision

Figure 2.1: Examples of different kinds of attributes. The ’unary’ attributes indicate some simple

attributes, whose characteristic properties are captured by individual image segments (appearance

for red, shape for round). In contrast, the ’binary’ attributes are more complex attributes, whose

basic element is a pair of segments (e.g. black/white stripes). Images from [FZ07].

The word attribute (e.g., has wings) prefers to the intrinsic characteristic that embody an in-



2.1. Attribute Learning in Computer Vision 19

stance or a class (e.g., bird) (Fu et al. [FHXG12]) and a human has the ability to decide whether

such a characteristic is present or not for a certain object (Lampert et al. [LNH13]). Thus

attributes answer the question of describing a class or instance in contrast to the typical (classi-

fication) question of naming an instance. The attribute description of an instance or category is

useful as a semantically meaningful intermediate representation to bridge the gap between low

level features and high level class concepts (Palatucci et al. [PHPM09]).

2.1.1 Attribute Learning Models

We will briefly review several of the most commonly used attribute learning models in this sec-

tion. Generally speaking, a key advantage of attribute learning models is their use to provide an

intuitive mechanism for multi-task (Salakhutdinov et al. [STT11]) and transfer learning (Hwang

et al. [HSG11]): enabling learning with few or zero instances of each class via sharing attributes

– zero-shot/N-shot learning. Particularly, the challenge of zero-shot recognition (as illustrated in

Figure 2.2 ) is to recognize unseen visual object categories without any training exemplars of the

unseen class. This requires the transfer of knowledge of additional semantic information from

auxiliary classes with example images to unseen target classes.

Figure 2.2: To recognise novel classes, zero-shot learning transfers knowledge from classes with

examples to novel classes. Images from Dr. Christoph Lampert’s slides for [LNH09].

Attribute learning models have been explored for images and to a lesser extent video (Liu

et al.[LKS11] and Fu et al. [FHXG12, FHXG13] as well as Chapter 3). Applications include

modeling the properties of human actions (Liu et al. [LKS11]), animals (Lampert et al. [LNH09,

LNH13]), faces (Kumar et al. [KBBN09]), scenes (Hwang et al. [HSG11]), and objects (Farhadi

et al. [FEH10, FEHF09]). Most of these studies assumed that an exhaustive space of attributes
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Figure 2.3: The high-level attributes allows the transfer of knowledge between object cate-

gories [LNH09]: the visual appearance of attribute is independently learned from training ex-

amples and across different categories; the the object class without any training images can be

detected based on which attribute description a test image fits best. Images from [LNH09].

has been manually specified.

Generative models for visual attributes The earliest work on attributes in Ferrari et al.

[FZ07] studied some elementary properties such as colour or geometric pattern. From human

annotations, Ferrari and Zisserman in [FZ07] proposed a generative model for learning simple

color and texture attributes. Specifically, we use model M to explain a whole image I. And

the image I is further represented by a set of segments {s}. A latent variable f is defined to be

associated with a foreground ( f = 1) or background ( f = 0) segment. All f for all segments of

I are grouped into a vector F. So the likelihood of the image is

p(I|M;F,a) = ∏
s∈I

p(s|M; f ,a)Ns (2.1)

where Ns is the number of pixel the image contains. Different types of attributes will con-

figure distinctive probability formulations which are specified by parameterM. For example, as

illustrated in Figure 2.1, the attribute can be either viewed as an unary (e.g. red colour and round

texture), or a binary (e.g., black/white stripes ).

Some later work (Parikh et a.[PG11b], Kovashka et al. [KPG12] and Berg et al. [BBS10])

extended the unary/binary attributes to compoundable attributes, which makes them extremely
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useful for information retrieval (e.g., complex queries such as “Asian women with short hair, big

eyes and high cheekbones”) and identification (e.g., finding an actor whose name you forgot, or

an image that you have misplaced in a large collection).

The generative models are formulated as the Bayesian formulation and enable the easy in-

tegration of prior knowledge of each type of attribute to compensate for limited supervision in

image and video understanding. The framework proposed in Chapter 3 belongs to the category

of generative models. In that framework, we have different prior knowledge for user-defined and

data-driven attributes.

IAP and DAP models Lampert et al. [LNH09, LNH13] studied the problem of object

recognition of categories for which no training examples are available. To solve such a problem,

attribute-based classification is introduced to perform object detection based on an intermediate

level semantic attribute representations. As illustrated in Figure 2.3, such attributes transcends

the specific learning tasks and pre-learned independently across different categories and thus

allowing transferring knowledge. Specifically, for zero-shot learning tasks, they proposed two

probabilistic frameworks, i.e., Direct Attribute Prediction (DAP) in Figure2.4(b) and Indirect

Attribute Prediction (IAP) in Figure2.4(c), these models can integrate human knowledge in the

recognition process of unseen classes by using category-level class-attribute associations.

• DAP model Assume the relation between known classes yi, ...,yk, unseen classes z1, ...,zL

and descriptive attributes a1, ...,aM is given by the matrix of binary associations values

ay
m and az

m. Such a matrix encodes the status of one attribute regarding one given class.

Extra knowledge is applied to define such an association matrix, for instance, by human

experts (Lampert et al. [LNH09, LNH13]), by concept ontology (Fu et al. [FHXG13]),

and by semantic relatedness measured between class and attribute concepts (Rohrbach et

al. [RSS12]). In the training stage, the attribute classifiers are trained by the attribute

annotations of known classes yi, ...,yk. At the test stage, the posterior probability p(am|x)

can be inferred for an individual attribute am in an image x. To predict the class label of

object class z,

p(z|x) = Σa∈{0,1}M p(z|a)p(a|x) = p(z)
p(az)

M

∏
m=1

p(am|x)az
m (2.2)

• IAP model The DAP model directly learns attribute classifiers from the known classes,

while the IAP model builds attribute classifiers by combining the probabilities of all asso-

ciated known classes. It is also introduced as direct similarity-based model in Rohrbach
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et al. [RSS12]. In the training step, we can learn the probabilistic multi-class classifier to

estimate p(yk|x) for all training classes yi, ...,yk. Once p(a|x) is estimated, we use it as the

same way as in for DAP in zero-shot learning classification problems. In the testing step,

we predict,

p(am|x) = Σ
K
k=1 p(am|yk)p(yk|x) (2.3)

PST model Rohrbach et al. [RES13] explored the manifold structure of the instances in

the novel classes to help attribute-based transfer learning for zero-shot and N-shot learning. Thus

they proposed a graph-based semi-supervised learning algorithm – PST model. Specifically, they

constructed a k-NN graph by using the low-level features of testing data. The distance of any

two data pairs (xi,x j) is

d(xi,x j) =
D

∑
d=1

∣∣xi,d− x j,d
∣∣

where D is the dimensionality of the low-level feature space. Once the k-NN graph is computed,

they replace the original distance with the semantic distance of attribute vectors by using

d(xi,x j) =
M

∑
m=1
|p(am|xi)− p(am|x j)|

where M� D and the similarity of the whole graph is measured by the RBF kernel. The label

set is initialized by the nearest neighbourhood distance of each testing instance to the prototypes

of each novel class.

2.1.2 Binary Vs. Relative Attributes

The attributes discussed above are ’binary’1 and they may be sufficient to indicate some prop-

erties (e.g. spotted) or annotations (e.g. has a head) of one image or object. Farhadi et al.

[FEHF09] learned a richer set of attributes including parts, shape, materials and etc. Another

commonly used methodology (e.g. Liu et al. [LKS11] in human action recognition, and Wang et

al. [WZ11] in attribute and object-based model ) is to take the attribute labels as latent variables

on the training dataset in the form of a structured latent SVM model, and the objective is to mini-

mize object prediction loss. In contrast, relative information in the form of relative attributes can

1Note that ’binary’ indicates using a single value to represent the strength of the attribute on one
instance/class. Nevertheless, such a value is not necessarily binary.



2.1. Attribute Learning in Computer Vision 23

(a) Flat multi-class classification (b) Direct attribute prediction (DAP) (C) Indirect attribute prediction (IAP)

Figure 2.4: Graphical representation of three different models: Flat, DAP and IAP. Dark gray

nodes (images x) are always observed; light gray nodes (auxiliary classes: y1,y2, · · · , yK) are

observed only during training. And white nodes ( novel target classes z1, z2,· · · , zL) are not

observed but must be inferred. DAP and IAP indicate two different ways for zero-shot learning,

while Flat model cannot generalise to detect novel target classes of no training examples. Images

from [LNH09].

be used as a more informative way to express richer semantic meaning and thus better represent

visual information.

Relative attributes (Parikh et al. [PG11b]) were recently proposed to learn a ranking function

to predict the relative semantic strength of image attributes. Specifically, annotators give pairwise

comparisons on images and a ranking function is then learned to estimate relative attribute values

for unseen images as ranking scores. These relative attributes are learned as a richer representa-

tions corresponding to the strength of visual properties, and used in a number of tasks including

visual recognition with sparse data, interactive image search (Kovashka et al. [KPG12]), and

semi-supervised (Shrivastava et al. [SSG12]) or active learning (Biswas et al. [BP13, PP12])

of visual categories. Kovashka et al. [KPG12] proposed a novel model of feedback for image

search where users can interactively adjust the properties of exemplar images by using relative

attributes in order to best match his/her ideal queries. This searching process is illustrated in

Figure 2.6.

In a broader sense, many other tasks of estimating continuous values representing visual

properties in image/video are also examples of relative attribute learning, e.g., image/video in-

terestingness [GGR+13, JYF+13], memorability [IPTO11, IXTO11], aesthetic [DOB11], and

human-face age estimation [FGH10, CGXL13]. As one special case of relative attribute, image

interestingness is studied by Gygli et al. [GGR+13], which showed that three cues contribute
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Figure 2.5: Relative attribute [PG11b] enables semantic richer textual descriptions than binary

attribute. For example, (b) is smiling more than (c) but less than (c); (e) is less natural than (d)

but more than (f).

the most to interestingness: aesthetics, unusualness/novelty and general preferences, the last of

which refers to the fact that people in general find certain types of scenes more interesting than

others, for example outdoor-natural vs. indoor-manmade. As the first work on predicting video

interestingness (illustrated in Figure 2.12), Jiang et al. [JYF+13] evaluated the different features

for video interestingness prediction from crowdsourced pairwise comparisons.

2.1.3 User-defined Vs. Data-driven Attributes

The attributes are usually defined by extra-knowledge of either expert users or concept ontology.

To better augment such user-defined attributes, Parikh et al. [PG11a] proposed a novel approach

to actively argument the vocabulary of attributes to both help resolve intra-class confusions of

new attributes and coordinate the “nameability” and “discriminativeness” of candidate attributes.

However, such user-defined attributes are far from enough to model the complex visual data.

The definition process can still be either inefficient (costing substantial effort of user experts)

and/or insufficient (descriptive properties may not be discriminative). To tackle such problems,

it is necessary to automatically discover more discriminative intermediate representations from

visual data, i.e. data-driven attributes.

Data-driven attributes have only been explored in a few previous works. Liu et al. [LKS11]

employed an information theoretic approach to infer the data-driven attributes from training ex-

amples by building their framework on a latent SVM formulation. They directly extended the
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Figure 2.6: Whittle search [KPG12]: Example iterative search results with relative attribute

feedback.

attribute concepts in images to comparable “action attributes” in order to better recognize human

actions. Attributes are used to represent human actions from videos and enable the construc-

tion of more descriptive models for human action recognition. They augmented user-defined

attributes by data-driven attributes, similar to latent class-conditional (CC) attributes learned in

Chapter 3, to better differentiate existing classes. However, our more nuanced distinction be-

tween CC and latent generalized free (GF) latent attributes better helps differentiate both exist-

ing classes and novel classes: class-conditional attributes are limited to those which differentiate

existing classes; without this constraint, GF attributes provide an additional cue to help differenti-

ate novel classes. Farhadi et al. [FEHF09] also learned user-defined and CC attributes separately.

This means that the learned CC attributes are not necessarily complementary to the user-defined

ones (i.e., they may be redundant).

Another limitation of previous data-driven attribute work [FEHF09, LKS11] is that their

data-driven attributs can not be directly used in zero-shot learning. This limits the efficacy of

learning the data-driven attributes. In Chapter 3, we uniquely showed how to use latent attributes

in zero-shot learning.

Despite such previous efforts, an exhaustive space of attributes is unlikely to be available,

due to the expense of ontology creation, and semantically obvious attributes for humans do not

necessarily correspond to the space of detectable and discriminative attributes. One method of

collecting labels for large scale problems is to use Amazon Mechanical Turk (AMT) [SF08].

However, even with excellent quality assurance, the results collected still exhibit strong label
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Figure 2.7: Schematic of conventional (left) DAP [LNH09] versus (right) M2LATM [FHXG13].

Shading indicates different types of constraints placed on the variables.

noise. Thus label-noise [TYH+09] is a serious issue in learning from either AMT, or existing

social meta-data. More subtly, even with an exhaustive ontology, only a subset of concepts from

the ontology are likely to have sufficient annotated training examples, so the portion of the on-

tology which is effectively usable for learning, may be much smaller. To solve this problem, in

Chapter 3 and [FHXG12, FHXG13] we introduce the concept of a semi-latent attribute space,

expressing user-defined and latent attributes in a unified framework, and proposed a novel scal-

able probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically

reduces requirements for an exhaustive and accurate attribute ontology and expensive annotation

effort. Figure 2.7 contrasts Direct Attribute Prediction (DAP [LNH09]) with our multi-modal

latent attribute topic model (M2LATM) [FHXG13]. The shading indicates the types of con-

straints placed on the nodes, with the dark nodes being fully observed, and the colored nodes in

M2LATM having user-defined, CC and GF type constraints.

2.1.4 Image Vs. Video Attributes

As discussed, most previous work in Section 2.1.1, Section 2.1.2 and Section 2.1.3 focus on

image attributes. However, most previous attribute work focused on image understanding, few

are about video attributes on video understanding.

Video attributes are recently studied and aim to indicate a wide range of topics such as those

related to objects (e.g., animal), indoor/outdoor scenes (e.g., meeting, snow), events (e.g., wed-

ding ceremony), and so on. Figure 2.8 gives one example of video attributes. Video attributes

thus share many similarities with the video concept detection in Multimedia community, for ex-

ample, recent studies address video concept detection (Snoek et al. [SHH+07] and Hauptmann
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Figure 2.8: The key frame of video shot can be represented by five attributes: “face,” “people,”

“walking running,” “people marching,” and “flag”. Images from [ZMWH07].

et al. [HYL+07] ) (also known as tagging [HGX11a, TAP+10, YHWZ11], and multi-label clas-

sification (Qi et al.[QHR+07]), video annotation (Tang et al. [THW+09])).

Most video attributes refer to a video ontology. Depending on the ontology, the level of ab-

straction and models used, many annotation approaches can therefore be seen as addressing a

sub-task of attribute-learning. Some annotation studies aim to automatically expand (e.g. Haupt-

mann et al.[HYL+07]) or enrich (Yang et al. [YHWZ11]) the set of tags queried in a given

search. Nevertheless, the possible space of expanded/enriched tags is still constrained by a fixed

ontology and may be very large (e.g., a vocabulary space of over 20,000 tags in Toderici et al.

[TAP+10]).

2.1.5 Low-level Features

Since the performance of computer vision algorithms is heavily depending on the choice of

data representation, we briefly summarise the low-level features used in this section. To detect

visual attributes, the state-of-the-art attribute classifiers have to learn Supporter Vector Machine

(SVM) classifiers from manually labelled images/videos which are represented by visual code

features (Sande et al. [vdSGS10] and Jiang et al. [JYN10]). Such features can be global features,

local features and recent deep features (Sermanet et al.[SEZ+14] and Donahue et al. [DJV+14]).

Global features (e.g. colour histogram, gist, edge, and wavelet) are statistics about the overall

distribution of color, texture, or edge information. The global features are the most classical type

of features and have been used in almost all earlier vision work. However, global features are
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Figure 2.9: Image representation using bag-of-visual-words. Images from [JYN10].

generally limited due to the presence of huge within-class variation, pose and lighting changes

in images and video shots.

To generate more robust low-level representations of image/video, features are extracted from

the local structures of visual objects. Thus local features have been widely studied over the past

decade. The most popular approach is the bag-of-visual-words (BoW) [SZ03]. As illustrated

in Figure 2.9, a visual vocabulary is generated by grouping similar local interest points (e.g.

SIFT [Low04], rgSIFT [vdSGS08], PHOG [BZM07b], SURF [BETG08], local self-similarity

histograms [SI07]) into a large number of clusters; one cluster corresponding to one visual word.

The image/video can thus be represented by a histogram of visual words which can be taken as

features.

Recent developed OverFeat (Sermanet et al. [SEZ+14]) and DeCaf (Donahue et al. [DJV+14])

features are generated by training Convolutional Neural Networks on the large-scale ImageNet

dataset [DDS+09] and achieve better or competitive results compared to the state-of-the-art on

various dataset. A more complete review on deep features are beyond the scope of this thesis.

We refer to Bengio et al. [BCV13] as a more thorough survey on this topic.

2.1.6 Attribute Learning Datasets

This section briefly summarises the dataset used in this thesis for attribute learning.
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2.1.6.1 Animal with Attribute (AwA) dataset

AwA dataset is firstly proposed in [LNH09]. The 50 Osher-son/Kemp animal images are col-

lected online. There are 30475 images with at least 92 examples of each class. Seven dif-

ferent feature types are provided: RGB color histograms, SIFT [Low04], rgSIFT [vdSGS08],

PHOG [BZM07b], SURF [BETG08], local self-similarity histograms [SI07] and DeCaf [DJV+14].

The AwA dataset defines 50 classes of animals, and 85 associated attributes (such as furry, and

has claws). Some examples are shown in Figure 2.3.

For the consistent evaluation of attribute-based object classification methods, the AwA dataset

defined 10 test classes: chimpanzee, giant panda, hippopotamus, humpback whale, leopard, pig,

raccoon, rat, seal. The 6180 images of those classes are taken as the test data, whereas the 24295

images of the remaining 40 classes can be used for training.

2.1.6.2 CUB-200-2011 dataset

CUB-200-2011 Wah et al. [WBW+11] contains 11788 images of 200 bird classes, as illustrated

in Figure 2.10. This is a more challenging dataset than AwA – it is designed for fine-grained

recognition and has more classes but fewer images. All images are annotated with bounding

boxes, part locations, and attribute labels. Images and annotations were filtered by multiple users

of Amazon Mechanical Turk. CUB-200-2011 is used as the benchmarks dataset for multi-class

categorization and part localization. Each class is annotated with 312 binary attributes derived

from the bird species ontology. We use 150 classes as auxiliary data, holding out 50 as target

data, which is the same setting adopted in Akata et al. [APHS13].

2.1.6.3 Image interestingness dataset

The image interestingness dataset was first introduced in Isola et al. [IXTO11] for studying

memorability, as illustrated in Figure 2.11. It was later re-annotated as an image interestingness

dataset by Gygli et al.[GGR+13]. It consists of 2222 images, each represented as a 932 di-

mensional feature vector as in [GGR+13]. 16000 pairwise comparisons were collected by using

AMT and are used as annotation.

2.1.6.4 Video interestingness dataset

The video interestingness dataset is the YouTube interestingness dataset introduced in Jiang et

al. [JYF+13], which contains 14 different categories, each of which has 30 YouTube videos.

10 ∼ 15 annotators were asked to give complete interesting comparisons for all the videos in

each category. So the original annotation is noisy but not sparse. We use a bag-of-words of
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Figure 2.11: Image Interestingness dataset. Images from [IXTO11].

Scale Invariant Feature Transform (SIFT) and Mel-Frequency Cepstral Coefficient (MFCC) as

the feature representation which are shown to be effective in Jiang et al.[JYF+13] for predicting

video interestingness. An example of the video interestingness dataset is shown in Figure 2.12.

2.1.6.5 Outdoor Scene Recognition (Scene) Dataset and Public Figure

Face Database (PubFig)

PubFig contains 772 images from 8 people and 11 attributes (‘smiling’, ‘round face’, etc.), and

it averages 418 labelled pairs for each attribute from 241 training images. Some example images

are shown in Figure 2.13. Scene (Oliva et al. [OT01]) consists of 2688 images from 8 categories

and 6 attributes (‘openness’, ‘natrual’ etc.) and an average 426 labelled pairs for each attribute

from 240 training images. Some examples are shown in Figure 2.14. Graphs constructed are

thus extremely sparse. Pairwise attribute annotation was collected by AMT (Kovashka et al.

[KPG12]). Each pair was labelled by 5 workers to average the comparisons by majority voting

by Kovashka et al.[KPG12]. Gist [OT01] and colour histograms features are used for PubFig,

and Gist alone for Scene. Each image also belongs to a class (celebrity or scene type).

2.1.6.6 Unstructured Social Activity Attribute (USAA) dataset

It is the first benchmark video attribute dataset for social activity video classification and anno-

tation introduced by us in [FHXG12]. We manually annotated the groundtruth attributes for 8

semantic class videos of Columbia Consumer Video (CCV) dataset [JYC+11], and select 100
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Figure 2.12: Video interestingness: Example frames of videos from the Flickr and YouTube

datasets collected in [JYF+13]. For each dataset, the video on top is considered more interesting

than the other one according to human judgements.

videos per-class for training and testing respectively. These classes were selected as the most

complex social group activities. As shown in Figure 2.16, a wide variety of attributes have been

annotated. By referring to the existing work on video ontology [ZMWH07, JYC+11], the 69 at-

tributes can be broken down into five broad classes: actions, objects, scenes, sounds, and camera

movement. We tried our best to exhaustively define every conceivable attribute for this dataset, to

make a benchmark for unstructured social video classification and annotation. Real-world videos

will not contain such extensive tagging. However, this exhaustive annotations give the freedom

to hold out various subsets and learn on the others in order to quantify the effect of annotation

density and biases on a given algorithm.

These eight classes are birthday party, graduation party, music performance, non-music per-

formance, parade, wedding ceremony, wedding dance and wedding reception (shown in Fig-

ure 2.15). Each class has a strict semantic definition in the CCV video ontology. Directly using

the ground-truth attributes (average annotation density 11 attributes per video) as input to a SVM,

the videos can be classified with 86.9% accuracy. This illustrates the challenge of this data: while

the attributes are informative, there is sufficient intra-class variability in the attribute-space, that
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Figure 2.13: Some examples of PubFig dataset. Images from [PG11b].

Figure 2.14: Examples of OSR dataset.

Birthday party Graduation
Music
performance

Non-music
performance Parade

Wedding
ceremony

Wedding
dance

Wedding
reception

Figure 2.15: Example frames from the eight class unstructured social activity dataset.
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Wedding 
reception

Wedding
dance

Clapping hands, Slow moving,    Taking photos,  Crowd,    Dinning Room,

Party House, Coloured light, Indoor, People talking,

Laugher, Dancing Music, Candles, Camera zoom

Clapping hands,   Dancing,  Slow moving , Bride, Groom,  Party House,

Indoor, Dancing music, Tracking moving object

Birthday
party

Birthday
party

Clapping hands, Hugging,Slow moving, People singing, Taking photos,

Party house, Indoor, Song, People talking, Conversation,

Laugher, Birthday song, Wrapped presents, Baloon, Candles

Clapping hands, Blowing candles, Slow moving, People singing,

Group of people, Indoor, Song, People talking, Conversation,

Laugher, Birthday song, Square birthday cake, Baloon

Action attributes  Object attributes Scene attributes Sound attributes Camera movement attributes

Figure 2.16: Attribute examples in social activity attribute video dataset. Different types of

attributes of both visual and audio modalities are shown in different colour.
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Figure 2.17: Attribute-classification accuracy using SVM on USAA dataset.
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even perfect knowledge of the attributes in an instance is insufficient for perfect classification.

The SIFT, STIP and MFCC features for all these videos are extracted according to [JYC+11],

and included in the dataset. We report the baseline accuracy of SVM-attribute classifiers learned

on the whole test set in Fig 2.17. Clearly some can be detected almost perfectly, and others

cannot be detected given the available features.

2.2 Semantic Representations Beyond Attributes

Figure 2.18: Akata et al. [APHS13] used attributes as side information for the label embedding

and measured the “compatibility”’ between the embedded inputs and outputs with a function F .

Images from [APHS13].

There are many other semantic representations, e.g. semantic word vector and WordNet.

The basic idea is to learn a semantic embedding function, i.e. a transformation, from the image

(feature) space to a semantic space within which the unseen novel target classes can be defined

and recognised by extra semantic knowledge. In the light of this idea, the attribute learning

discussed above can be taken as one special case of such semantic embedding by mapping images

to the semantic attribute space.

Larochelle et al. [LEB08] embedded handwritten character with a typed representation which
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further helps recognise unseen classes. Specifically, once the embedding is learned from known

classes, novel classes can be identified based on the similarity of prototype representations of

classes and predicted presentations of the instances in the embedding space.

Linguistic semantic word space can also be employed for the semantic embedding for at-

tribute learning. Socher et al. [SGS+13] learned a neural network model to embed each image

with a 50-dimensional word vector in the semantic space which is trained by the unsupervised

linguistic model [HSMN12] and using Wikipedia text. The images from either known or un-

known classes could be mapped into such word vectors and classified by finding the closest

prototypical linguistic word in such semantic space. Frome et al. [FCS+13] further scaled such

ideas to recognise large-scale datasets. They proposed a deep visual-semantic embedding model

to map images into a rich semantic embedding space for large-scale zero-shot recognition. Skip-

gram model [BPV+92, MCCD13] was trained by a text corpus of 5.7 million documents (5.4

billionwords) from online encyclopedia (wikipedia.org) and used to construct such semantic em-

bedding space. Different from the unsupervised linguistic model [HSMN12], such a skip-gram

model is a re-current neural network model and models the syntactic and semantic regularities in

language [23] which allows vector-oriented reasoning. Fu et al. [FYH+14b] showed that such a

reasoning could be used to synthesize all different label combination prototypes in the semantic

space and thus is crucial for multi-label zero-shot learning. For example, Vec(“Moscow”) should

be much closer to Vec(“Russia”)+Vec(“capital”) than Vec(“Russia”) or Vec(“capital”) only in

the semantic space.

Concept ontology is directly used as the semantic representation alternative to attributes. For

example, WordNet [Mil95] is one of the most widely studied concept ontology. It is a large-scale

semantic ontology built from a large lexical dataset of English. Especially, nouns, verbs and

adjectives and adverbs are grouped into sets of cognitive synonyms (synsets) which indicates

one distinct concept. Such an idea of semantic distance defined by the WordNet ontology is

also used by Rohrbach et al. [RSS12, RSS+10] for transferring semantic information in zero-

shot learning problems. They thoroughly evaluated many alternatives of semantic links between

auxiliary and target classes by exploring linguistic bases such as WordNet, Wikipedia, Yahoo

Web, Yahoo Image, and Flickr Image. Additionally, WordNet has been used for many vision

problems. Fergus et al. [FBWT10] leveraged the WordNet ontology hierarchy to define semantic

distance between any two categories for sharing labels in classification, as shown in Figure 2.19.



2.3. Related Work in Machine Learning 37

Figure 2.19: Examples of Wordnet sub-tree for a subset of 386 classes in [FBWT10]. The

associated semantic affinity matrix is shown in (a), along with a closeup of 10 randomly chosen

rows and columns in (b). Images from [FBWT10].

Semantic embedding by using attributes is another type of semantic representation different

to semantic attributes. Akata et al. [APHS13] proposed to take attribute-based image classifica-

tion as a label-embedding problem by minimising the compatibility function between an image

and a label embedding. In their work, a modified ranking objective function (as illustrated in

Figure 2.18) was derived from the WSABIE model [WBU10].

2.3 Related Work in Machine Learning

In this thesis, we design three main frameworks to solve the challenges in attribute learning on

image/video understanding. Such frameworks are tightly related to many well studied machine

learning algorithms. Specifically,

• the probabilistic topic model inspired the framework in Chapter 3;

• the framework in Chapter 4 is based on graph-based label propagation and Canonical Com-

ponent Analysis, and the projection domain shift problem is also related to the problems

of domain adaptation in the machine learning community;

• the related work of robust ranking and robust learning to rank from crowdsourced pairwise

annotations is reviewed and compared with the algorithms in Chapter 5.

So in this section, we briefly review these works in machine learning.
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2.3.1 Probabilistic Topic Model

Probabilistic topic models (PTMs) (Blei et al. [BNJ03]) have been used extensively in modeling

images (Wang et al.[WBL09]) and videos (Wang et al. [WM09], and Niebles et al. [NWFF08])

via learning a low-dimensional topic representation. PTMs are related to attribute learning in that

multiple tags can be modeled generatively [BJ03, WBL09], and classes can be defined in terms of

their typical topics [WBL09, BM07, HLGX11, HGX11a]. However these topic-representations

are generally discovered automatically and lack the semantic meaning which attribute models

obtain by supervising the intermediate representation.

There has been limited work (only Yu et al. [YA10] and Fu et al. [FHXG12]) using topics

to directly represent attributes, and provide attractive properties of attribute learning such as

zero-shot learning. These are limited to user-defined attributes only [YA10], or formulated in a

computationally non-scalable way and for a single modality only [YA10, FHXG12]. In contrast

to [YA10] (as well as most annotation studies [TYH+09, THW+09, SHH+07, QHR+07]), in

Chapter 3 we will leverage the ability of topic models to learn unsupervised representations from

data; and in contrast to [WM09, WBL09, NWFF08, BM07], their framework also leverages prior

knowledge of user-defined classes and attributes. Together, these properties provide a complete

and powerful semi-latent semantic attribute-space. Scalability can also be a serious issue for

topic models applied to video, as most formulations take time proportional to the volume of

features (Wang et al. [WBL09]). The unstructured social activity attribute (USAA) dataset is

larger than text datasets which have been addressed with large-scale distributed algorithms and

supercomputers (Newman et al.[NAS09]). Therefore chapter 3 will generalize ideas in sparse

equivalence class updating to make inference tractable in M2LATM.

2.3.2 Graph-based Label Propagation

Graph-based label propagation is well-studied for semi-supervised learning problems. In general,

graph-based semi-supervised methods define a graph with labelled/unlabelled examples as nodes

and the similarity of examples as edges, and assume that the label smoothness over the whole

graph, i.e., neighbouring labels tend to have the same label (as shown in Figure 2.20). Thus

intrinsically such methods are nonparametric, discriminative and transductive. When distinc-

tive graph types are used, there are three different categories for graph-based label propagation:

classification on traditional 2-graphs, multi-graph and Hypergraphs.
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Figure 2.20: Motivations for classification by graph-based label propagation. Images from

[Zhu07].

Classification on traditional 2-graphs is the most widely studied for semi-supervised prob-

lems (Zhou et al. [ZBL+04] and Zhu [Zhu07]). Graph-based label propagation has been used for

zero-shot learning in Rohrbach et al. [RES13]. They constructed a single graph in the original

low-level feature space with the semantic space prototypes used to help label propagation in a

heuristic way and no more than two semantic spaces can be used simultaneously.

This thesis focuses on classification on multi-view graphs (C-MG) and Hypergraphs. Most

C-MG solutions are based on the seminal work of Zhou et al. [ZB07] which generalised spectral

clustering from a single graph to multiple graphs by defining a mixture of random walks on

multiple graphs. However, crucially, the influence/trustworthiness of each graph is given by

a weight that has to be pre-defined and its value has a great effect on the performance of C-

MG [ZB07]. In Chapter 4 and [FHX+14a] we extended the C-MG algorithm in [ZB07] by

introducing a Bayesian prior weight for each graph, which can be measured automatically from

data. Bayesian model averaging was thus applied to fuse multi-view graphs into a single one.

Their experiments show that our TMV-HLP algorithm is superior to [ZB07] and [RES13].

Classification on Hypergraphs is a generalisation of classification on traditional 2-graph and

C-MG. Hypergraphs have been used as an effective tool to align multiple data/feature modali-

ties in data mining [LHS+13], multimedia [FGZ+10] and computer vision [LLS+13, HYLC13]

applications. Since a hypergraph is the generalisation of a traditional 2-graph with each hyper-

edge connecting a set of nodes (vertices), it can better cope with noisy nodes and thus achieve
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Figure 2.21: Classification with multiple graphs in [ZB07]. There are two directed graphs over

the same set of vertices. Those vertices belong to two different classes respectively denoted by

gray and white circles.

better performance than pairwise 2-graphs [HLM09, HLZM10, FGZ+10]. Fu et al. [FGZ+10]

proposed to construct a spatio-temporal shot hypergraph for multi-view video summarisation.

Such a hypergraph was used to systematically model the complex multi-view video correlations

in which each graph node denotes a video shot, while each type of hyperedge characterizes the

relationship among shots. No existing work considers employing hypergraphs for multi-view

data modelling, except Hong et al. [HYLC13].

However, different from the multi-view hypergraphs proposed in Hong et al. [HYLC13]

which are homogeneous hypergraphs, that is, constructed in each view independently, Chapter

4 constructs a multi-view heterogeneous hypergraph: using the nodes from one view as query

nodes to compute hyperedges in another view. This novel graph structure enables better ex-

ploitation of the complementarity of different views in the common embedding space which is

validated in their experiments.

2.3.3 Canonical Component Analysis (CCA) for Semantic Embedding

A number of successful applications to learning a semantic embedding space reply on Canonical

Component Analysis (CCA) (Hotelling et al. [Hot36]). Hardoon et al. [HSST04] proposed a

general method of kernel CCA to learn semantic embedding to web images and their associated

text. Such embedding enables a direct comparison between text and images.

Recently the idea of relating low-level feature and semantic views of data has been exploited

in visual recognition and cross-modal retrieval. There are many existing works [SFF10, GKIL13,



2.3. Related Work in Machine Learning 41

HG11, WG07] that focused on modelling the images/videos with associated text (e.g. tags on

Flickr/YouTube). Multi-view CCA is often exploited to provide unsupervised fusion of different

modalities. Gong et al. [GKIL13] also investigated the problem of modeling Internet images

and associated text or tags and proposed a three-view CCA embedding framework for retrieval

tasks. Due to combining more semantic views, the performance of their framework outperformed

a number of two-view baselines on the retrieval tasks. Chapter 4 further extends the three-view

to much more views of multi-view CCA embedding framework for zero-shot learning problems.

Different from most of previous work, their embedding space was transductive. That is, learned

from unlabelled target data from which all semantic views are estimated by projection rather than

being the original views. This can rectify the projection domain shift problem existed in most

zero-shot learning problems.

2.3.4 Domain Adaptation

Domain adaptation methods attempt to address the domain shift problems that occur when the

assumption that the source and target instances are drawn from the same distribution is violated.

Methods have been derived for both classification (Fernando et al. [FHST13]) and regression

(Storkey et al. [SS07]), and both with (Duan et al. [DTXM09]) and without (Fernando et al.

[FHST13]) requiring label information in the target task. In contrast, the zero-shot learning

problem means that most of supervised domain adaptation methods are irrelevant. Critically,

Chapter 4 dicussed the projection domain shift problem that exists in zero-shot recognition. The

projection domain shift problem differs from the conventional domain shift problems in that (i)

it is in-directly observed in terms of the projection shift rather than the feature distribution shift,

and (ii) the source domain classes and target domain classes are completely different and could

even be unrelated which renders any efforts to align the two domains directly unfruitful. Chapter

4 thus proposes to rectify the projection domain shift problem in a transductive way and relies

on correlating different representations of the unlabelled target data in a multi-view embedding

space.

In the context of natural language processing, Blitzer et. al. [BFK09] studied the zero-shot learn-

ing problem of predicting user-satisfaction ratings across different domains (e.g. book reviews to

DVD reviews on Amazon). In their work, views correspond to domains, and for them the tasks

for both the source and target domains are the same – estimating user ratings, whilst we aim to

recognise a different set of object classes in the target domain.
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2.3.5 Robust Ranking and Robust Learning to Rank from Crowdsourced

Pairwise Annotations

The inference of a global ranking from a population of partial orders, e.g. paired comparisons,

has been widely studied in economics [Arr63], statistics [Dav88, JLYY11], and computer science

[CK10, XHJ+12, Joa02]. By aggregating pairwise ranking into global ranking, statistical ranking

has the potential to be robust against local ranking noise.

Recently, large-scale pairwise annotations in computer vision are increasingly collected as

human intelligence tasks (HIT) using crowdsourcing services, e.g. AMT (Amazon Mechanical

Turk). Many studies [KCS08, SF08, PH12] highlighted the necessity of validating random or

malicious labels/workers and gave some filtering heuristics for outliers during data collection.

However, existing approaches to annotation noise are primarily based on majority voting where

each instance is annotated multiple times and averaged in order to remove outliers. Majority

voting was shown to achieve ‘expert’ level of labelling quality within a natural language process-

ing context [SOJN08, CB09]. However, it requires a costly volume of redundant annotations.

Moreover, majority voting for pairwise comparison data is only a local (per-pair) inconsistency

filtering method; it thus has no effect on global inconsistency and even risks introducing addi-

tional inconsistency [Geh83].

HodgeRank has been proposed in [JLYY11] for relatively sparse graphs to decompose each

edge flow into three orthogonal components, the gradient flow representing the L2-optimal global

ranking and two cyclic flows for measuring the local and global inconsistencies respectively.

Later, Hodgerank has been successfully applied to subjective video quality assessment [XHJ+12,

XHY12]. In particular, HodgeRank provides some diagnostic information about outliers. For

the purpose of robust ranking the crowdsourced pairs, Xu et al. [XXHY13] proposed to assess

Quality of Experience (QoE) using crowdsourced pairwise comparison a robust rating scheme

derived from Huber-LASSO which is based on robust regression with Huber’s Loss [Hub81] and

Hodge Decomposition on graphs (Jiang et al. [JLYY11]). Yu et al. [Yu12] proposed an angular

embedding model that maps pairwise comparisons onto a circle and finds the global ranking

score via a primary eigenvector solution in the presence of noise. It had been employed to solve

a number of vision problems including image denoising (Yu [Yu12]) and object segmentation

(Maire et al. [MYP11]). Outliers can be also explicitly identified using Transitivity Satisfaction

Rate (TSR) (Chen et al. [CWCL09b]).



2.4. Summary 43

To learn ranking functions for applications such as interestingness prediction [FHX+14b] and

relative attribute prediction [PG11b, KPG12], a feature representation of the data points must

be used as model input in addition to the local ranking orders. This is addressed in learning

to rank which is widely studied in machine learning community [CQL+07, LGL+08, SQTW09,

CECC08]. Critically, in practice outliers are still a big issue for learning from crowdsourced pair-

wise annotations. In Chapter 5, we will extend the Huber-LASSO framework in robust ranking

and further proposed a Unified Robust Learning to Rank (URLR) framework for robust learning

to rank from crowdsourced annotations. We showed theoretically and experimentally that by

jointly solving the outlier detection and ranking estimation problems, the framework achieved

better outlier detection than existing statistical ranking methods and better ranking prediction

than existing learning to rank method such as rankSVM without outlier detection.

2.4 Summary

The preceding discussions have covered essential issues and studies in the literature regarding

attribute learning for image and video understanding. Some widely used attribute learning mod-

els are introduced. We particularly discuss and compare binary vs. relative attributes, user-

defined vs. data-driven attributes, image vs. video attributes, as well as the low-level features

and datasets. We also review other semantic representations beyond attributes, and machine

learning work related to this thesis.

The existing methods have shown promising results of attribute learning for image and video

understanding. Nevertheless, there are still several open problems and limitations that they do

not solve. Firstly, the user-defined attributes are very limited in analysing complex image and

video data. The user-defined attributes are defined by extra-knowledge of either expert users

or a concept ontology. Thus these attributes are affected intrinsically by sparse, incomplete

and ambiguous annotations. Secondly, the existing attribute learning models suffer from the

projection domain-shift problems, prototype sparsity problems and inability to combine multiple

semantic representations. Thirdly, how to learn from noisy annotations of relative attributes is

still an unsolved problem.

In the subsequent chapters of this thesis, our approach is formulated to address these limita-

tions by the following approach: learning latent attributes in Chapter 3 to break the limitations of

user-defined attributes; transductive multi-view embedding in Chapter 4 to tackle the problems
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of projection domain-shift, prototype sparsity and the inability to combine multiple semantic rep-

resentations; robust learning of relative attributes in Chapter 4 to learn from noisy annotations of

relative attributes.
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Chapter 3

Learning Latent Attributes

In this Chapter, we are interested in automatic classification and annotation of unstructured group

social activities and complex image classes. Particularly, we focus on home videos of social

occassions such as graduation ceremony, birthday party, and wedding reception in USSA dataset

of Chapter 2.1.6.6 which feature activities of group of people ranging anything between a handful

to hundreds (Fig. 1). By classification, we aim to categorise each video/image into a class; and

by annotation we aim to predict what are present in the video/image. This implies a wide range

of multi-modal annotation types including object (e.g. group of people, cake, balloon), action

(e.g. clapping hands, hugging, taking photos), scene (e.g. indoor, garden, street), and sound (e.g.

birthday song, dancing music). We consider that the problems of classification and annotation

are inter-related and should be tackled together.

We propose to solve the problems using an attribute learning framework, where annotation

becomes the problem of attribute prediction and image/video classification is helped by a learned

attribute model. Attributes describe the characterisitics that embody an instance or a class. Es-

sentially attributes answer the question of describing a class or instance in contrast to the typical

(classification) question of naming an instance. The attribute description of an instance or cate-

gory is useful as a semantically meaningful intermediate representation to bridge the gap between

low level features and high level classes. Attributes thus facilitate transfer and zero-shot learning

to alleviate issues of the lack of labelled training data, by expressing classes in terms of well

known attributes.

Learning user-defined attributes is an effective way for transfer learning tasks. Nevertheless,
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the user-defined attributes may be limited when used to explore complex multi-modal visual

data, since these attributes are defined by extra knowledge from either user experts or concept

ontologies and the definition process has no direct linkage with the visual recognition tasks. The

possibly poor annotation quality of user-defined attributes may further negatively affect attribute

learning algorithms. In most cases, the annotations of user-defined attributes are sparse, incom-

plete and ambiguous.

These problems are particularly prominent when we apply attribute learning to understand

complex consumer videos. The visual data of consumer videos are of unstructured social group

activity, i.e. an unconstrained space of objects, events and interactions. The casual nature of

this data makes it difficult to extract good features, since they are typically captured with low

resolution, poor lighting, occlusion, clutter, camera shake and background noise.

To this end, we propose a framework which can jointly learn user-defined and latent at-

tributes. This chapter systematically formulates a semi-latent attribute space learning framework

of learning multi-modal user-defined and latent attributes for automatic classification and anno-

tation of unstructured group social activity. In contrast to existing work of attribute learning for

image object class or simple human action classification, this work for the first time, tackles the

problem of attribute learning for understanding group social activities with sparse and incom-

plete labels. In particular we focus on videos of social group activities, which are particularly

challenging and topical examples of this task because of their multi-modal content and complex

and unstructured nature relative to the density of annotations.

The main content of this Chapter has been previously published in

1. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong; “Attribute Learning

for Under- standing Unstructured Social Activity”, European Conference on Computer

Vision (ECCV) 2012;

2. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong “Learning Multi-

modal Latent At- tributes” IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI),

36(2), 303-316, Feb 2014;
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3.1 Problem Context and Definition

We first formally introduce the problem of attribute-based learning before developing our contri-

butions in the next section. Learning to detect or classify can be formalised as learning a mapping

F : X d → Z of d-dimensional raw data X to label Z from training data D = {(xi,zi)}n
i=1. A

variant of the standard approach considers a composition of two mappings [PHPM09]:

F = S(L(·)), L : X d →Y p, S : Y p→Z, (3.1)

where L maps the raw data to an intermediate representation Y p (typically with p� d) and then

S maps the intermediate representation to the final class Z . Examples of this approach include

dimensionality-reduction via PCA (where L is chosen to explain the variance of x and Y p is

the space of orthogonal principal components of x) or linear discriminant and multi-layer neural

networks (where L is optimised to predict Z).

Attribute learning [LNH09, PHPM09] exploits the idea of requiring Y p to be a semantic

attribute space. L and S are then learned by direct supervision with instance, attribute vector

and class tuples D = {(xi,yi,zi)
n
i=1}. This has benefits for sparse data learning including multi-

task, N-shot and zero-shot. In multi-task learning [STT11] the statistical strength of the whole

dataset can be shared to learn L, even if only subsets corresponding to particular classes can be

used to learn each class in S. In N-shot transfer learning, the mapping L is first learned on a

large “source/auxiliary” dataset D. We can then effectively learn a much smaller “target” dataset

D∗ = {(xi,z∗i )}m
i=1, m� n containing novel classes z∗ by transferring the attribute mapping L to

the target task, leaving only parameters of S to be learned from the new dataset D∗. The key

unique feature of attribute learning is that it allows zero-shot learning: the recognition of novel

classes without any training examples F : X d →Z∗ (Z∗ /∈ Z) via the learned attribute mapping

L and a manually specified attribute description S∗ of the novel class.

3.2 Semi-latent Semantic Attribute Space

Most prior attribute learning work [FEH10, FEHF09, LNH09, KBBN09] unrealistically assumes

that the attribute space Y p is completely defined in advance, and contains sufficiently many

attributes which are both reliably detectable from X and discriminative for Z . We now relax

these assumptions by performing semantic feature reduction [PHPM09] from the raw data to a

lower dimensional semi-latent semantic attribute space (illustrated in Fig. 1.5(b)).
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Semi-latent semantic attribute space: A p dimensional metric space where pud dimensions en-

code manually specified semantic properties, and pla dimensions encode latent se-

mantic properties determined by some objective given the manually defined dimen-

sions.

We aim to define an attribute-learning model L which can learn a semi-latent attribute space

from training data D where |y| = pud , 0 ≤ pud ≤ p. That is, only a pud sized subset of the

attribute dimensions are user-defined, and pla other relevant latent dimensions are discovered

automatically. The attribute-space is thus partitioned into observed and latent subspaces: Y p =

Y pud
ud ×Y

pla
la with p = pud + pla. To support a full spectrum of applications, the model should

allow:

1. an exhaustively and correctly specified attribute space p = pud (corresponding to previous

attribute learning work);

2. a partially known attribute space p = pud + pla (corresponding to an incomplete ontology);

3. a completely unknown attribute space p = pla. Such a model would go beyond existing

approaches to bridge the gap (Fig. 1.5(a)) between exhaustive and unspecified attribute

ontologies. As we will see, performing classification in this semi-latent space will provide

increased robustness to the amount of domain-knowledge/ontology creation budget, and to

annotation noise as compared to conventional approaches.

3.3 Multi-modal Latent Attribute Topic Model

To learn a suitable attribute model L (Eq. (3.1)) with the flexible properties outlined in the pre-

vious section, we will build on probabilistic topic models [BNJ03, HLGX11]. Essentially we

will represent each attribute with one or more topics, and add different types of constraints to the

topics such that some topics will represent user-defined attributes, and others latent attributes.

First, we briefly review the standard Latent Dirichlet Allocation (LDA) [BNJ03] approach

to topic modeling. Applied to video understanding [HGX11b, HLGX11, HGX11a, NWFF08],

conventional LDA learns a generative model of videos xi. Each quantized feature xi j in clip

i is distributed according to a discrete distribution p(xi j|β yi j
,yi j) with a Dirichlet parameter β

corresponding to its (unknown) parent topic yi j. Topics in video i are distributed according to
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another discrete distribution p(yi|θ i) paramaterized by the Dirichlet variable θ i. Finally, the prior

probability of topics in a video are distributed according to the p(θ i|{α}) with parameter α .

Standard LDA is uni-modal and unsupervised. Unsupervised LDA topics can potentially

represent fully latent (GF) attributes. We will modify LDA to constrain a subset of topics (UD

and CC) to represent conventional supervised attributes [LNH09, PHPM09]. The three attribute

types are thus given a concrete representation in practice by a single topic model with three types

of topics (UD, CC and GF), differing in terms of the constraints with which they are learned. We

next detail our M2LATM including learning from (1) supervised attribute annotations and (2)

multiple modalities of observation.

3.3.1 Attribute-topic Model

In order to model supervised user-defined attribute annotations, M2LATM establishes a topic-

attribute correspondence so that attribute k is represented by topic k. We encode the (user-defined)

attribute annotation for video i via a per-instance vector topic prior α i. An attribute k is encoded

as absent via setting αik = 0, or present via αik = 1. The full joint distribution for a database D

of videos with attribute annotations {α i} is:

p(D|{α},β ) =

∏
i

ˆ (
∏

j
∑
yi j

p(xi j|yi j,β )p(yi j|θ i)

)
p(θ i|α i)dθi, (3.2)

To infer the attributes for a clip, we require the posterior p(θ i,yi|xi,α i,β ). As for LDA [BNJ03],

this is intractable to compute exactly. Variational inference approximates the full posterior with

a factored variational distribution:

q(θ i,yi|γ i,φ i) = q(θ i|γ i)∏
j

q(yi j|φi j). (3.3)

where γik parameterizes the Dirichlet factor of topic/attribute k proportions θ i within clip i; and

φi jk parameterizes the discrete posterior yi j of topic/attributes for feature xi j. Optimizing the

variational bound results in the updates:

φi jk ∝ βxi jk exp(Ψ(γik)),

γik = αik +∑
j

φi jk, (3.4)

where Ψ is the digamma function. Iterating Eq. (3.4) to convergence completes the variational

E-step of an expectation maximisation (EM) algorithm. The M-step updates parameter β by
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maximum likelihood: βvk ∝ ∑i, j I(xi j = v)φi jk. After EM learning, each attribute/topic y (e.g.,

clapping hands or singing) will be associated with a particular subset of the low-level features

via p(x|y,β ) and learned parameter β .

3.3.2 Learning Multiple Modalities

Topic model generalizations exist to jointly model multiple translations of the same text [MWN+09]

via a common topic profile θ , where one language could be considered one modality. However,

this is insufficient because as we have discussed, a given attribute may be unique to a particular

modality. To model multi-modal data D = {Dm}M
m=1,Dm = {xim}, we therefore exploit a unique

topic prior θ m per-modality m as follows:

p({Dm}|{α},{β m}) = ∏
i,m

ˆ
dθ im p(θ im|α i)

×

(
∏

j
∑
yi jm

p(xi jm|yi jm,β m)p(yi jm|θ im)

)
. (3.5)

By sharing the annotations α across modalities, but allowing a unique per-modality prior

θ m, the model is able to represent both attributes with strong multi-modal correlates (e.g., clap-

ping hands) and those more unique to a particular modality (e.g., laughter, candles). Moreover,

this approach provides an automatic way to deal with different modalities being expressed on

different scales. Different scale modalities is a serious problem for most topic models hoping

to simply concatenate multi-modal data: either one modality dominates or words underflow is

risked if data is normalized. For example, 99% of the feature frequencies in USAA are in the

range of [0,8] (appearance), [0,450] (motion), and [0,50] (auditory). For this reason studies

[YA10] often only use a single modality when many are available. Fig. 3.1 provides a graphical

model representation of M2LATM.

3.3.3 Learning User-defined and Latent Attributes

With no user-defined attributes (p = pla, pud = 0), a p-topic LDA model provides a mapping

L from raw data x to a p-dimensional latent space by way of the variational posterior q(θ |γ).

This is a discrete analogy to the common use of PCA to reduce the dimension of continuous

data. However, to (i) support user-defined attributes when available and (ii) ensure the latent

representation is discriminative, we add constraints.
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Figure 3.1: Graphical model for M2LATM.

User-defined attributes are typically provided in terms of length pud binary vectors vud spec-

ifying the attributes of class z or instance i [LNH09, PHPM09]. We have no prior knowledge of

the relation between vud and each word (i, j), so vud cannot determine y directly. To enforce the

user-defined attribute constraint, we define a per instance prior α i = [αud
i ,α la

i ], setting αud
i,k = 0

if vud
i,k = 0 and αud

i,k = 1 otherwise. It enforces that instances i lacking an attribute k can never use

that attribute to explain the data; but otherwise leaving the model to infer attribute proportions,

modality and word correspondence.

To learn the latent portion of the attribute-space, we could simply leave the remaining por-

tion α la of the prior unconstrained. However, for the latent space to be useful, it should be both

discriminative (for class) and generalizable (to potential new classes) [HLGX11, HGX11a]. To

obtain both of these properties, we split the prior into components for “class-conditional” (CC)

and “generalized free” (GF) topics. When learned jointly with UD attributes and with appro-

priate constraints, CC topics will be selective for known classes and GF topics will represent

attributes shared between known classes, and hence likely to generalize. Specifically, we split

the latent space prior α la
i = [αcc

i ,αg f ]. In the CC component αcc
i = {α i,z}Nz

z=1, each subset α i,z

corresponds to a class z. For an instance i with label zi, set αcc
i,z=zi

= 1 and all other αcc
i,z6=zi

= 0.

This enforces that only instances with class z can allocate topics ycc
z and hence that these topics

are discriminative for class z. The GF component of the latent space prior is uniform αg f = 1,

meaning that GF topics are shared between all classes and thus represent aspects shared among

all the data.
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3.3.4 Classification

To use M2LATM for classification, we define the mapping L in Eq. (3.2) as the posterior statistic

γ in Eq. (3.9). The remaining component to define is the attribute-class mapping S. Impor-

tantly, for our complex data, this mapping is not deterministic (i.e., 1:1 correspondence between

attributes and classes assumed in [LNH09, PHPM09]). Like [LKS11], we therefore use standard

classifiers to learn this mapping from (zi,γ i) pairs obtained from our M2LATM attribute learner.

3.3.5 Surprising Attributes

M2LATM can also be used to find videos which exhibit surprising/abnormal semantics. Given

the training labels and estimated set of posterior semi-latent topic profiles {zi,γ i}, we can fit

a multi-variate Gaussian N (µz
γ
,Σz

γ) to the profile of examples from each class z. At test time,

once the class z∗ of a given instance is estimated, we can detect surprising attribute semantics by

computing the likelihood p(γ∗|µz∗
γ
,Σz∗

γ ). Importantly, unlike earlier notions of attribute-surprise

[FEHF09], this approach (i) also considers surprising latent attributes, and (ii) inter-attribute and

inter-modality correlations.

3.4 Semi-latent Zero Shot Learning and Inference

3.4.1 Semi-latent Zero Shot Learning

Zero-shot learning addresses classification of unseen classes via semantic attribute descriptions

rather than via learning from training examples. A description vud
z∗ ∈ Yud for a new class z∗

is provided in terms of attributes from human prior knowledge. Existing approaches [LNH09,

PHPM09] define simple deterministic prototypes vud
z∗ in terms of UD attributes only, and classify

by matching these templates vud
z∗ to the estimated UD attributes for each test instance, e.g., by

nearest-neighbour (NN) [FEHF09] or naïve-Bayes. Using NN, conventional zero-shot classifi-

cation of test instance x∗ with UD attribute representation y∗,ud is:

f (x∗) = argmin
z∗
{
∥∥y∗,ud−vud

z∗
∥∥}. (3.6)

However, in this approach one needs a large ontology of attributes, and to specify an (imprac-

tically long) definition of each new class in terms of every attribute in the ontology. Counter-

intuitively, we can work with a smaller UD ontology (pud ≥ 1) and leverage the latent por-

tion of the attribute-space to still obtain a rich representation for classification. We project a



3.4. Semi-latent Zero Shot Learning and Inference 53

short/incomplete UD attribute description of a novel class into the complete semi-latent attribute

space description as follows:

1. Input a test set D∗ = {x∗} containing novel classes, and UD attribute prototypes vud
z∗ for

those classes.

2. Infer attributes y∗ = [y∗,ud ,y∗,la] for each test data x∗ (given by γ in Eq. (3.4))

3. Let NNud
k (vud

z∗ ,{y∗,ud}) denote the set of k nearest UD neighbours in D∗ to each prototype

vud
z∗ in Yud .

4. Project UD prototypes vud
z∗ ∈ Yud into the full attribute space Y by averaging their nearest

neighbours (Eq. (3.7)).

5. Perform zero-shot classification in the full attribute space Y (Eq. (3.8)).

vz∗ =
1
k ∑

y∈NNud
k (vud

z∗ ,D
∗)

y, (3.7)

f (x∗) = argmin
z∗
‖y∗−vz∗‖ . (3.8)

The mechanism of this algorithm is schematically illustrated in two dimensions by Fig. 3.2. The

one dimensional UD prototype y∗,ud (blue line) only weakly identifies (shading) the target class

‘x’. After projecting into the full space, the two-dimensional prototype (blue dot) more clearly

identifies (shading) the target class.

Our approach can be viewed in a few ways: as transductively exploiting the test data dis-

tribution; or as one iteration of an EM-style algorithm for data with partially-known parame-

ters and unknown variables (in contrast to the typical semi-supervised learning case of partially

known variables and unknown parameters [Zhu07]). Previous ZSL studies are constrained to

user-defined attributes, thus being critically dependent on the completeness of the user attribute-

space. In contrast, our approach uniquely leverages a potentially much larger body of latent

attributes via a loose manual definition of a novel class. We will show later this approach can

significantly improve zero-shot learning performance.

3.4.2 Efficient Variational Inference and Implementation

Our formulation thus far, as well as the earlier work [FHXG12] and LDA in general, infers the

posterior over topics/attributes for each word (i.e. Eq. (3.4) indexed by word j). This is true
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Figure 3.2: Schematic illustration of latent ZSL mechanism.

whether solved with variational inference [BNJ03] or MCMC [YA10, MWN+09]. Computation

is thusO(NK) for N total words and K topics. For our video dataset, where words correspond to

dense interest point detections, N is of the order 1010 and grows with video length. Conventional

topic models do not scale to this data in either processing or memory demands, requiring days

to run on in practice. In contrast, approaches such as support vector machines (SVM) [JYC+11]

use the same data, but operate on word proportions within the vocabulary V . SVMs are thus

O(V ) and therefore significantly faster than conventional O(N) topic models because typically

V is ≤ 104.

Inspired by [AWST09], we observe that while each observation xi jm has an associated topic

posterior, all instances of the same vocabulary item x ∈ V within one video have the same pos-

terior φ . Exploiting this equivalence class, the same inference can therefore be expressed in the

O(V ) vocabulary domain, rather than the O(N) word domain. Inference for multiple modalities

m expressed in vocabulary-domain is thus:

φivkm ∝ βvkm exp(Ψ(γikm)),

γikm = αik +∑
v

hv(xim)φivkm. (3.9)

Here, hv(xim) denotes the histogram of observations in xim, and the topic posterior matrix φ x··m

is now of size V K instead of NK. Further efficiencies may be obtained by observing that only

sufficient statistics for vocabulary elements observed in each document need to be computed.

That is, Eq. (3.9) can be updated as a sparse matrix operation for unique observations Ui at
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Figure 3.3: Examples from the eighth classes and video attributes in the USAA dataset. Different

types of attributes in visual and auditory modalities are shown in different color.

O(UiK) cost per document i, where typically Ui�V � N.

3.5 Experiments

We first introduce our datasets and baseline models (Sections 3.5.1 and 3.5.3), then report quan-

titative results obtained for the three main sparse data learning problems: multi-task learning, N-

shot learning and zero-shot learning (Sections 3.5.4 and 3.5.5). We also perform additional anal-

ysis on attribute-understanding tasks, robustness, and computation time (Sections 3.5.6-3.5.9).

3.5.1 Unstructured Social Activity Attribute Dataset

In previous work [FHXG12], we introduced a new attribute dataset for social activity video

classification and annotation: unstructured social activity attribute (USAA)1. We selected 100

videos per-class for training and testing from 8 classes of social activities in the CCV dataset

[JYC+11] (thus 1600 videos in total). We defined a wide variety of relevant attributes (illustrated

in Fig. 3.3), and manually annotated their ground truth at the individual video level. The classes

were selected as the most complex social group activities and the video length ranged from 20

seconds to 8 minutes. The eight classes are: birthday party, graduation party, music performance,

non-music performance, parade, wedding ceremony, wedding dance and wedding reception.

We experimented with two attribute-ontologies. In the first ontology, we extracted keywords

from the CCV class definitions [JYC+11] and used these to obtain a set of 15 attributes. For

1http://www.eecs.qmul.ac.uk/~yf300/USAA/download/
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example, the definition of graduation party is: “Graduation ceremony with crowd, or one or

more people wearing graduation caps and gowns”, from which we obtain attributes “crowd”

and “graduation cap”. In order to obtain a more exhaustive ontology of attributes, we further

annotated a total of 69 attributes covering every conceivable property for this dataset includ-

ing actions, objects, scenes, sounds, and camera movement. These attributes are illustrated in

Figure 3.3. Real-world video will rarely contain such extensive tagging. However, this exhaus-

tive annotation gives the freedom to learn on various subsets in order to quantify the effect of

annotation density and biases.

Using the 69 ground-truth attributes (average density 11 per video) directly as input to a

SVM, the videos can be classified with 86.9% accuracy. Individual SVM-attribute detectors

achieve the mean average precision in the range [0.22,1] with average 0.785 across the entire

ontology. The high variability reflects some attributes which can be detected almost perfectly

(e.g., indoor scene), and others which cannot be detected given the available features (e.g., parade

float). These points illustrate the challenge of these data: there is sufficient intra-class variability

that even perfect knowledge of the attributes instance is insufficient for perfect classification; and

moreover many attributes cannot be detected reliably.

3.5.2 Video Feature Extraction and Representation

The foundation for video content understanding is extracting and representing suitably infor-

mative and robust features. This is especially challenging for unconstrained consumer video

and unstructured social activity due to dramatic within-class variations, as well as noise sources

of occlusion, clutter, poor lighting, camera shake and background noise [JYN10]. Global fea-

tures provide limited invariance to these noise-sources. Local keypoint features collected into

a bag-of-words (BoW) are considered state of the art [JYC+11, JYN10, YHWZ11]. We follow

[JYC+11, JYN10, YHWZ11], in extracting features for three modalities, namely static appear-

ance, motion, and auditory. Specifically, we employ scale-invariant feature transform (SIFT)

[Low04], spatial-temporal interest points (STIP) [Lap05], and mel-frequency cepstrum (MFCC)

respectively. The details of extracting these visual features are discussed in Chapter 2.1.5.

3.5.3 Experiment Settings

For each experiment, we use 100 videos per class for testing, and a set of 100 or fewer per class

for training both the attribute detectors and category classifiers. We report test set performance
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averaged over 5 cross-validation folds with different random selections of instances, classes, or

attributes held out as appropriate. We compare the following models:

• Direct: Direct KNN or SVM classification on raw data without attributes. SVM is used for

experiments when the number of training instances is bigger than 10; and KNN otherwise.

Our experiments show that KNN performed consistently better than SVM until the number

of training instances is bigger than 10.

• DAP: SVM classifiers learn available UD attributes. Then zero-shot learning (ZSL) by

Direct Attribute Prediction (DAP), exactly as described by [LNH09]. It is only applicable

to ZSL and deterministic attributes.

• SVM-UD: SVM classifiers learn available UD attributes. For N-shot learning, a logistic re-

gression (LR) classifier then learns classes given the attribute classifier outputs. LR is cho-

sen over SVM because it was more robust to sparse data. This is analogous to [FEHF09].

For ZSL the SVM posteriors are matched against the manually specified prototype with

NN. This is an obvious generalization of DAP [LNH09] to non-deterministic attributes.

• SCA: Topic model from [WBL09]. Learns a generative model for both class label and

annotations given latent topics, in contrast to the attribute paradigm of expressing classes

in terms of annotations/attributes. It only applies to multi-task learning.

• ST: Synthetic Transfer [YA10]. A ZSL strategy for attribute topic models: Use the source

topic model to synthesize training data for novel target classes, which are then learned

conventionally. We use this with our topic model. It only applies to ZSL.

• M2LATM: Our M2LATM is learned, then a LR classifier learns classes based on the semi-

latent topic profile γ . We use 100 topics in total, with 1 UD topic per UD attribute, 1 latent

CC per class, and remaining topics are allocated to GF latent attributes.

For all experiments, we cross-validate the regularisation parameters for SVM and LR. For all

SVM models, we use the χ2 kernel. For M2LATM, the user-defined part of the M2LATM topic

profile γ is estimating the same quantities as the SVM attribute classifiers, however the latter are

slightly more reliable due to being discriminative classifiers, so we use these in conjunction with

the latent topic profile for classification. The significance of this is quantified in Section 3.5.7.

For semi-latent ZSL, parameter K (Section 3.4) was fixed to 5% of the instances.
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3.5.4 Multi-task Learning

3.5.4.1 M2LATM multi-modal latent attributes enhance multi-task learning

of sparse data with incomplete ontology.

When all classes are known in advance, shared attributes provide a mechanism for multi-task

learning [STT11]. The statistical strength of data supporting each attribute can be aggregated

across its occurrences in all classes.

Table 3.1 summarizes our results. We first consider the simplest upper bound scenario where

the data is plentiful (100 instances per class, “100I”) and the attributes are exhaustively defined

(all 69UD, “A/69”). In this case all the models perform similarly except SCA[WBL09], due to

the SCA is enforced by the supervised generatic topic model which is relatively weaker than the

other compatitors of discriminatively supervised. Next, we consider the sparse data and the in-

complete attribute space scenario of interest, with only 10 instances per class to learn from. Here

Direct performs poorly due to insufficient data. Limiting the attributes to a randomly selected

seven every trial (“R/7”), SVM-UD performs poorly and our M2LATM outperforms all the others

by a large margin. Moreover, SVM-UD cannot be applied with a completely held out attribute-

ontology (“N/0”), while M2LATM performance is almost unchanged. With no attribute-ontology

“N/0”, SCA simplifies to supervised LDA [BM07]2. Our model is thus able to share statistical

strength among attributes (unlike Direct); and unlike SVM-UD, it exploits latent attributes to do

so robustly to the completeness of the attribute-space definition.

3.5.4.2 M2LATM improves both best and worst case semantic ontologies.

In order to quantify the effectiveness of each attribute in the ontology we ranked the attributes in

terms of a simple selection criteria of their “informativeness” used in text categorization [YP97]:

Mutual information with the class (informativeness) times reliability (detection rate;). We then

contrast performance between a best and worst case user-defined attribute ontology, by using

the top and bottom 10% of UD attributes (“T/7” and “B/7”) respectively. SVM-UD loses 14%

performance from the best to worst case, whereas our M2LATM model is virtually unchanged.

In both cases, M2LATM provides a significant improvement over SVM-UD. SCA [WBL09] per-

forms significantly and consistently worse than the other models because it leverages attributes

in a weaker way (as annotations rather than constraints), so we do not consider it further.

2We used http://www.cs.princeton.edu/chongw/slda/
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Direct SVM-UD SCA[WBL09] M2LATM

100I, A/69 66.0 65.7 44.0 65.6

10I, A/69 26.8 40.2 32.2 40.6

10I, R/7 26.8 26.4 25.6 38.3

10I, N/0 26.8 - 17.3 40.4

10I, T/7 26.8 32.4 26.0 38.3

10I, B/7 26.8 18.2 26.0 38.9

Table 3.1: Multi-task classification performance for USAA. 8 classes, chance = 12.5%. Row la-

bels are I: number of training instances per class, A: all attributes, R: random subset of attributes,

N: no attributes, T: top attributes, B: bottom attributes.

3.5.5 Transfer Learning

3.5.5.1 M2LATM multi-modal latent attributes enhance N-shot learning of sparse data.

In N-shot transfer learning, one assumes ample examples of a set of source classes, and sparse (N)

examples of a disjoint set of target classes. To test this scenario, in each trial we randomly split the

8 classes into two disjoint groups of four source and target classes. We use all the data from the

source task to train the attribute models (M2LATM and SVM-UD), and then use these to obtain

the attribute profiles for the target task. Using the target task attribute profiles we perform N-shot

learning, with the results summarized by Table 3.2. Importantly, the SVM-UD attribute learning

approach cannot deal with zero attribute situations, so can provide no benefit over Direct here,

while our M2LATM improves significantly over Direct (“N/0”). In addition to drawing random

subsets of attributes (“R/7” and “R/34”), we also consider the subset of 15 attributes (“O/15”)

we obtained from the CCV ontology (Section 3.5.1). Our M2LATM performs comparably or

significantly better than Direct and SVM-UD in every case. Importantly M2LATM is robust to

the both sparse data (performance > 35% for 1-shot learning), and exhaustiveness of the attribute-

space definition (no attribute “N/0” performance within 5% of all attribute “A/69” performance).

In contrast, Direct suffers strongly under sparse data 1-shot learning, and SVM-UD suffers with

sparse attribute-space (7UD “R/7” performance 12% below all attribute performance). The robust

performance of M2LATM is enabled by the semi-latent attribute representation.
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1-shot 5-shot 10-shot

Direct SVM-UD M2LATM Direct SVM-UD M2LATM Direct SVM-UD M2LATM

N/0 29.0 - 35.3 33.6 - 48.0 35.7 - 53.0

R/7 29.0 30.9 35.9 33.6 36.9 48.0 35.7 38.7 52.2

R/34 29.0 35.0 36.5 33.6 44.5 48.9 35.7 47.5 52.8

O/15 29.0 36.1 37.7 33.6 46.8 49.7 35.7 50.2 53.3

A/69 29.0 39.1 38.6 33.6 49.7 52.1 35.7 52.5 56.1

Table 3.2: N-shot classification performance for USAA dataset (4v4 classes, chance = 25%) .

3.5.5.2 M2LATM multi-modal latent attributes enhances zero-shot learning.

Like N-shot learning, the task is to learn transferrable attributes from a source dataset for use on

a disjoint target set. Instead of providing training examples, users manually specify the definition

of each novel class in the user-defined attribute space. ZSL is often evaluated in simple situations

where classes have unique 1:1 definitions in the attribute-space [LNH09]. For unstructured social

data [JYC+11], strong intra-class variability violates this assumption, making evaluation more

subtle. To define the novel classes, we take the thresholded mean (as in [FEHF09, FHXG12]) of

the attribute profiles for each instance of that class from our ground-truth.

Our results are summarized in Table 3.3. The key observation is that using latent attributes

to support the user-defined attributes allows M2LATM to improve on SVM-UD [LNH09], which

only uses UD attributes in ZSL. This is a surprising and significant result, because it is not obvi-

ous that ZSL from human descriptions should be able to be exploit latent data-driven attributes.

Additionally, we compare the synthetic data transfer strategy from [YA10], generating N = 50

synthetic data instances per class from the zero-shot definition, and training the classifier based

on the learned profiles for these. We found that this underperformed DAP in most cases, and

M2LATM in every case. This is unsurprising, because synthetic data adds no truly new infor-

mation: it is generated from the UD word-topic distributions β , learned from the source dataset.

M2LATM already uses β , but additionally exploits latent topics.
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SVM-UD ST[YA10] M2LATM

R/7 27.1 18.1 33.8

O/15 31.3 36.9 39.4

R/34 36.7 30.9 39.2

A/69 33.2 31.0 41.9

Table 3.3: Zero-shot classification performance (%) for USAA (4v4 classes, chance = 25%).
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Figure 3.4: Exploiting multi-modality: LATM vs M2LATM for USAA dataset. Left: Multi-task

classification. Right: 0/N-shot learning shown as margin of M2LATM over LATM – positive

value means increase of accuracy.

3.5.6 Attribute Understanding

3.5.6.1 M2LATM makes effective use of multiple modalities.

An important contribution of M2LATM is explicitly representing the correspondence between

attributes and features of each modality, bridging the cross-modal gap. Existing approaches

often ignore this issue either by using only one modality [YA10] or taking a weighted aver-

age/concatenation [LNH09] of modalities, which introduces issues in selection of scaling/weighting

factors. We compare M2LATM against a simpler variant of our approach approach, LATM.

LATM takes the standard approach of simply concatenating feature vectors (with rescaling to

ensure modalities are represented on the same scale). Explicit multi-modality consistently im-

proves the results relative to simple concatenation in multi-task (Fig. 3.4, left) and transfer (Fig.

3.4, right) learning.
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Modality Attributes

Static (SIFT) Candles, Dark outdoors, Party House

Motion (STIP) Slow moving, Crowd, Bright outdoors

Audio (MFCC) Laughter, Singing, Instrumental music

Static+Motion Hold microphone, Birthday caps, Crowd

Static+Audio Singing, People in a row, Fast moving

Audio+Static Formal speech, Crowds, Dining room

Table 3.4: Top-3 attributes most strongly associated with modalities.

3.5.6.2 M2LATM associates attributes with their observation modality.

To provide further insight into the capabilities of our cross-modal model, we consider a novel task

of learning which modalities each attribute appears in. This can be computed from the relative

proportion of words assigned by the model to static appearance, motion or auditory modalities

when explaining a given topic/attribute. That is, comparing modalities m in ∑i γikm for each

attribute k. To illustrate this, Table 3.4 reports the top-3 attributes most strongly associated with

each modality and each modality pair (as assessed by geometric mean). Clearly most attributes

have associations with intuitive modalities.

3.5.6.3 M2LATM can detect semantically surprising multimedia content.

As a final example of attribute understanding, we illustrate some examples of surprising seman-

tics discovered by our framework – based on the correlations encoded in the class-attribute rela-

tionships (Section 3.3.5). Fig. 3.5(A) is correctly classified as a birthday party. However, both

the “instrumental music” (auditory) and “musical instruments” (static appearance) attributes are

detected (a person sings “happy birthday” using a guitar), which are unusual in birthday party

settings. Fig. 3.5(B) is a music performance video, which unexpectedly has the “costume” at-

tribute, as there are also costumed actors on stage. A wedding ceremony is shown in Fig. 3.5(C),

where guests are unusually drinking during the ceremony (“drinking glass” attribute). Fig. 3.5(D)

illustrates an example of expected attributes which are surprisingly absent. In this case the video

is correctly classified as a parade, however the expected attributes “bright outdoor scene” and

“parade float” are absent because it is, unusually, an indoor parade.
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(A) (B)

(C) (D)

Figure 3.5: Examples of surprising videos: (A) birthday party with instrumental music, (B) music

performance with costumes, (C) wedding ceremony with drinking glasses, (D) an indoor parade.

3.5.7 Further Evaluations

3.5.7.1 M2LATM improves robustness to label noise.

An important challenge for learning from real-world user data, or AMT annotations, is dealing

with label-noise. We expect our model to deal better with label noise in the user-defined at-

tributes, because it can additionally leverage automatically discovered latent attributes for a more

robust overall representation. To simulate this, we repeated the previous multi-task and zero/N-

shot learning experiments, but randomly flipped 50% of attribute bits on 50% of the training

videos (so 25% wrong annotations). M2LATM is more robust than SVM-UD (Fig. 3.6 red vs

blue), sometimes dramatically so. For example, when subjected to label noise, the multi-task

classification performance of SVM-UD drops by 8% (vs only 3% for M2LATM) and actually

performs worse than Direct.

3.5.7.2 User-defined and latent attributes should be learned jointly.

The M2LATM model has three complementary types of topics that define the semi-latent attribute

space. An advantage of our model is to learn these jointly. To quantify this, we also learn them

separately by training a batch of SVM classifiers (for UD topics), a constrained topic model (just

CC topics), and an unsupervised topic model (GF topics). We compare performance using the
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1-shot 5-shot 10-shot

Ind. Joint Ind. Joint Ind. Joint

R/7 35.0 38.8 42.0 48.0 48.0 52.2

A/69 38.8 38.6 49.4 52.1 54.6 56.1

Table 3.5: Independent vs joint learning of semi-latent attributes. N-shot transfer. (4v4 classes,

chance = 25%) .

concatenated output of the individual models vs the output of the jointly model in N-shot transfer

learning. The results (Table 3.5) show that joint learning is always similar or significantly better

than independent learning, so joint learning of latent attributes is indeed important to ensure they

learn complementary aspects to UD attributes.

3.5.7.3 Significance of using SVM posteriors as user-defined attributes.

We use M2LATM to jointly learn UD, CC and GF attributes in a single generative model, with

the aim of ensuring that latent attributes are complementary to user-defined attributes. However,

as discussed in Section 3.5.3, we ultimately use the SVM posteriors in place of the UD topics

because, being discriminatively trained strong classifiers, they perform slightly better. However,

this is not a significant factor in our model’s performance: across all the experiments, the margin

of using SVM attribute classifiers over topic posteriors is [−3%∼ 4%].
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3.5.8 Analysis of Discovered Latent Attributes

3.5.8.1 The setting of the number of latent attributes

In each experiment, we fixed the attribute number to a round value greater than the total number

of UD attributes in the exhaustive ontology. (69→100 for USAA, 85→150 for AwA). If too few

are used, the model cannot learn anything beyond the UD ontology, if too many are used, the

model can be over-fitting. The values used were set a priori and not tuned.

In general this free parameter could be eliminated by optimising it using cross-validation(CV)3

or by developing a non-parametric Bayesian variant of our model to automatically determine the

number of topics. The performance is not particularly sensitive to the number of topics. To illus-

trate point, we show some results for CCV performance while varying the number of topics in

Figure 3.7:
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Figure 3.7: Zero and N-shot classification accuracy for USAA dataset. Left: Varying which type

of latent attributes are included. Right: Varying total number of topics used.

3.5.8.2 Latent attributes can discover user-defined attributes from a withheld ontology, as well

as novel attributes outside the full ontology.

In this section we investigate what is learned by latent attributes: can they discover UD attributes

not provided in the ontology, and do they discover anything outside of the full UD ontology?

Firstly, we define the distance between learned attributes i and j as the normalized correlation

between their multinominal parameters D(i, j) = β T
i β j/(‖βi‖‖β j‖). Fig. 3.8 shows the sorted

similarity matrix between attributes for M2LATM learned in a conventional A/69 and semi-latent

R/7 attribute setting. The diagonal structure shows that latent attributes have largely discovered

many of the semantic UD attributes of interest to users. The uncorrelated strip to the right repre-

sents latent attributes in the R/7 model which have discovered aspects of the data not covered by

3However CV may be not reliable in the sparse data domain we are investigating
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Figure 3.8: Similarity between user-defined and latent attributes.

the UD attributes.

To visualize an attribute, we select its top-N most likely words (from β ), and then plot oc-

currences of these words on videos with high probability for this attribute (γ). Fig. 3.9 (top

row) shows an example of static appearance (SIFT) attributes bride and cake. The high degree of

overlapping between red circles and red crosses indicates that the re-discovered latent attributes

match the withheld UD attributes well. Examples of STIP attributes blow candle, and dancing

are shown in Fig. 3.9 (second row). For auditory attributes, we show birthday song and speech

in Fig. 3.9 (third row). In this case, we plot the time-series of the attribute weight for the cor-

responding UD attribute and the latent attribute which rediscovered it along with ground-truth

for when the particular sound was audible. All of these latent attributes were GF type, except

birthday song, which was CC – being uniquely selective for birthday-party class.

Finally, to further illustrate the value of latent attributes, we visualized some latent attributes

with no similarity to any existing UD attribute (i.e., those on the right strip of Fig. 3.8). This

revealed new attributes which we had not included in our ontology despite intending it to be

exhaustive. Fig. 3.9 (bottom row) shows two examples: (i) a horizontal line attribute, which the

model learns is informative for classes with stages and fences such as concerts and performances;

and (ii) a tree attribute, which the model learns is informative for typically outdoor or situations

such as wedding receptions and parades. These results support our motivating point that manual

ontologies are almost certainly incomplete, and benefit from being complemented with a set of

latent attributes.
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Figure 3.9: Visualization of user-defined (circles) and corresponding latent attributes (crosses).

Red circles illustrate representative words from the UD attribute (A/69); red crosses illustrate the

words from the corresponding latent attribute which discovered these concepts when withheld

(R/7). Blue dots illustrate interest-points not related to attributes concerned.
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1-shot 5-shot 10-shot

Condition Direct SVM-UD M2LATM Direct SVM-UD M2LATM Direct SVM-UD M2LATM

N/0 16.4 - 19.2 21.5 - 30.5 23.6 - 35.9

R/9 16.4 25.1 27.1 21.5 32.6 35.6 23.6 36.4 39.0

R/42 16.4 30.7 28.3 21.5 42.5 42.5 23.6 45.0 45.7

A/85 16.4 31.9 28.5 21.5 43.4 38.0 23.6 46.8 43.0

Table 3.6: N-shot classification performance for AwA dataset (40v10 classes, chance = 10%).

3.5.9 Computational Scalability

In Section 3.4.2, we introduced a new sparse vocabulary-domain representation of our inference

algorithm. To contrast the improved scalability of this representation (Eq. (3.9)) vs. the stan-

dard word-domain approach (Eq. (3.4), also used by [YA10, WBL09, NWFF08, FHXG12]), we

recorded the matlab computation time for 10 instance multi-task learning on the USAA data. Our

model required 30 minutes versus to 5 hours for the conventional approach. This margin grows

with the video length and density of features, so this is an important contribution for scalability.

3.5.10 Experiments on Animals with Attributes (AwA)

Our model is not specific to videos/social activities. We also study the well known AwA dataset,

(see [LNH09] for full details). AwA dataset defines 50 classes of animals, and 85 associated

attributes (such as furry, and has claws). There are 30475 images with at least 92 examples of

each class. We use the same six BoW features from [LNH09]. In contrast to USAA dataset, each

class has a distinct deterministic definition in terms of attributes. For M2LATM, we keep the

complexity fixed at 150 topics: with 1CC attribute per class, up to 85 user-defined attributes, and

the others are GF latent attributes. There are six different kind of features extracted to describe

the AwA images.

Table 3.6 shows N-shot learning results for AwA, with the attributes learned from all in-

stances of 40 classes, and the target task learned from 1−10 instances of the held out ten classes

(same condition as [LNH09]). The same general results hold: M2LATM performs comparably or

better than the others in most cases. Notably, although SVM-UD slightly outperforms M2LATM

with the exhaustive A/85 condition (due to M2LATM’s larger number of dimensions over fit-

ting slightly), the use of latent attributes enables M2LATM to outperform SVM-UD in the most
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No Attrib Prior Attrib Prior

[YA10]/[MSN11]/[KKTH12] DAP M2LATM DAP M2LATM

R/9 - 26.3 26.9 27.8 29.2

R/42 - 34.4 38.2 36.0 39.7

A/85 33.0/33.0/32.7 37.0 39.2 39.2 41.3

Table 3.7: Zero-shot classification performance (%) for AwA (40v10 classes, chance = 10%).

relevant and challenging cases of few UD attributes.

The ZSL results are shown in Table 3.7. Here, because the AwA attributes are deterministic,

we were able to implement and apply DAP zero-shot learning precisely as described in [LNH09].

Different from [LNH09], we found that attribute priors provided a noticeable improvement in per-

formance, so we show results with and without priors. In general, M2LATM outperforms DAP

across the range of ontology completeness. For context, we also show the ≈ 33% figure reported

by several recent ZSL studies [YA10], [MSN11] and [KKTH12], although these conditions may

not be exactly comparable to ours. This highlights the fact that our approach outperforms very

recent methods with as few as half of the available attributes (R/42).

3.6 Summary

In this chapter a new framework is developed for multimedia understanding and focused on

bridging the semantic and cross-modal gaps via an attribute-learning approach. In particular we

focus on understanding videos of social group activities, which are particularly challenging and

topical examples of this task because of their multi-modal content and complex and unstructured

nature relative to the density of annotations. A solution to this problem would have huge appli-

cation potential, e.g., content-based recognition and indexing, and hence content-based search,

retrieval, filtering and recommendation of multimedia.

To solve this problem, we introduce the concept of semi-latent attribute space, expressing

user-defined and latent attributes in a unified framework, and propose a novel scalable proba-

bilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces

requirements for an exhaustive accurate attribute ontology and expensive annotation effort. In

experiments, we show that our framework is able to exploit latent attributes to outperform con-

temporary approaches for addressing a variety of realistic sparse multimedia data learning tasks
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including: multi-task learning, learning with label noise, N-shot transfer learning and importantly

zero-shot learning.

We address the limitations of previous studies including reliance on an exhaustive manual

specification of the attribute space, ignoring or simplistically dealing with multi-modal content,

and the unrealistic requirement of noiseless annotation of attributes. In particular, we are able to:

1. flexibly learn a full semantic-attribute space whether exhaustively defined, completely un-

available, available in a small subspace (i.e., present but sparse), or available but with noisy

examples;

2. improve multi-task and N-shot learning by leveraging latent attributes;

3. go beyond existing zero-shot learning approaches (which only use user-defined attributes)

by also exploiting latent attributes;

4. explicitly leverage attributes in conjunction with multi-modal data to improve cross-media

understanding, enabling new tasks such as explicitly learning which modalities particular

attributes appear in;

5. make our topic model applicable to large multimedia data by expressing it in a significantly

more scalable way than previous studies – invariant to the length of the input video and

density of the features.
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Chapter 4

Transductive Multi-view Embedding

It is estimated that human can distinguish 30,000 basic object classes [Bie87] and many more

subordinate ones (e.g. breeds of dogs). To recognise such high number of classes, humans have

the ability to “learning to learn” and transfer knowledge from known classes to unknown ones.

Inspired by this ability and to minimise the necessary labelled training examples for conventional

supervised classifiers, researchers build the recognition models that are capable of classifying

novel classes with no training example via attribute learning models. As introduced in Chapter 2,

most attribute learning models learn a projection from a low-level feature space to the semantic

space by the auxiliary dataset and apply such projection without adaptation to the target dataset.

The knowledge is thus transferred from known classes to novel unknown classes with no or only

a few labels.

Nevertheless there are three inherent problems that exist in previous attribute learning mod-

els. The more details of these problems have been discussed in Chapter 1.2.2, 1.2.3 and 1.2.4

respectively. We briefly summarise them here to give an overview in this Chapter.

Projection domain-shift problems: Since the known (auxiliary) and unknown (target) data have

different and potentially unrelated classes, the underlying data distributions of the classes

differ, so do the ‘ideal’ projection functions between the low-level feature space and the

semantic spaces. Using the projection functions learned from the auxiliary dataset/domain

without any adaptation to the target dataset/domain causes such an unknown shift/bias.

Prototype sparsity problems: For each target class, we only have a single prototype which is
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insufficient to fully represent what that class looks like.

Inability to combine multiple semantic representations: Besides attribute representation, we

can have multiple semantic representations (e.g. continuous word vectors [SGS+13]).

Each representation (or semantic ‘view’) may contain complementary information – useful

for distinguishing different classes in different ways. However, the state-of-the-art attribute

learning algorithms are inable to explore multiple intermediate semantic representations.

Particularly, in the DAP model, different components of the model are affected by different

problems and their negative effects aggregate and degrade the performance of zero-shot learning.

This chapter presents a transductive multi-view embedding framework to solve these three

problems simultaneously. The transductive setting means using the unlabelled test data to im-

prove generalisation accuracy. In our framework, each unlabelled target class instance is rep-

resented by multiple views: its low-level feature view and its (biased) projections in multiple

semantic spaces (visual attribute space and word space in this work). To rectify the projection

domain shift between auxiliary and target datasets, we introduce a multi-view semantic space

alignment process to correlate different semantic views and the low-level feature view by pro-

jecting them onto a common latent embedding space learned using multi-view Canonical Cor-

relation Analysis (CCA). The intuition is that when the biased target data projections (semantic

representations) are correlated/aligned with their (unbiased) low-level feature representations,

the bias/projection domain shift is alleviated. Furthermore, after exploiting the complementar-

ity of different low-level feature and semantic views synergistically in the common embedding

space, different target classes become more compact and more separable, making the subsequent

zero-shot recognition a much easier task.

Even with the proposed transductive multi-view embedding framework, the prototype spar-

sity problem remains – instead of one prototype per class, a handful are now available depending

on how many views are embedded, which are still sparse. Our solution is to pose this as a semi-

supervised learning problem: prototypes in each view are treated as labelled ‘instances’, and we

exploit the manifold structure of the unlabelled data distribution in each view in the embedding

space via label propagation on a graph. To this end, we introduce a novel transductive multi-view

hypergraph label propagation (TMV-HLP) algorithm for recognition. The core in our TMV-HLP

algorithm is a new distributed representation of graph structure termed heterogeneous hyper-

graph which allows us to exploit the complementarity of different semantic and low-level feature
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views, as well as the manifold structure of the target data to compensate for the impoverished

supervision available from the sparse prototypes. Zero-shot learning is then performed by semi-

supervised label propagation from the prototypes to the target data points within and across the

graphs. The whole framework is illustrated in Figure 4.1.

By combining our transductive embedding framework and the TMV-HLP zero-shot recog-

nition algorithm, our approach generalises seamlessly when none (zero-shot), or few (N-shot)

samples of the target classes are available. Uniquely it can also synergistically exploit zero +

N-shot (i.e., both prototypes and labelled samples) learning. Furthermore, the proposed method

enables a number of novel cross-view annotation tasks.

The main content of this Chapter has been previously published/submitted in

1. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong. “Transductive

Multi-view Embedding for Zero-Shot Recognition and Annotation” European Conference

on Computer Vision (ECCV) 2014;

2. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, and Shaogang Gon“Transductive Multi-

view Zero-Shot Learning” minor revision of IEEE Trans. Pattern Analysis and Machine

Intelligence (TPAMI)

3. Yanwei Fu, Yongxing Yang, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong.

“Transductive Multi-label Zero- shot Learning” British Machine Vision Conference (BMVC)

2014;

4. Yanwei Fu, Yongxing Yang, Timothy M. Hospedales, Tao Xiang, and Shaogang Gong.

“Transductive Multi-calss and Multi-label Zero-shot Learning” ECCV 2014 workshop on

Parts and Attribute;

4.1 Problem Setup of Transductive Multi-view Embedding Framework

We have cS source/auxiliary classes with nS instances S = {XS,Y i
S,zS} and cT target classes T ={

XT ,Y i
T ,zT

}
with nT instances. X indicates the t−dimensional low-level feature of all instances;

so XS ⊆ Rns×t and XT ⊆ RnT×t . zS and zT are the auxiliary and target class label vectors. We

assume the auxiliary and target classes are disjoint: zS ∩ zT = ∅. We have I different types

of intermediate semantic representations; Y i
S and Y i

T represent the ith type of mi dimensional

semantic representation for the auxiliary and target datasets respectively; so Y i
S ⊆ RnS×mi and
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Y i
T ⊆ RnT×mi . Note that for the auxiliary dataset, Y i

S is given as each data point is labelled. But

for the target dataset, Y i
T is missing, and its prediction Ŷ i

T from XT is used instead. As we will see

later, this is obtained using a projection function learned from the auxiliary dataset. The problem

of zero-shot learning is to estimate zT given XT and Ŷ i
T .

4.2 Learning a Transductive Multi-View Embedding Space

Without any labelled data for the target classes, external knowledge is needed to represent what

each target class looks like, in the form of class prototypes. Specifically, each target class c

has a pre-defined class-level semantic prototype yi
c in each semantic view i. In this Chapter,

we consider two types of intermediate semantic representation (i.e. I = 2) – attributes and word

vectors, which represent two distinct and complementary sources of information. We use X , A

and V to denote the low-level feature, attribute and word vector spaces respectively. The attribute

space A is typically manually defined using a standard ontology. For the word vector space

V , we employ the state-of-the-art skip-gram neural network model [MCCD13] trained on all

English Wikipedia articles. To 13 Feb. 2014, it includes 2.9 billion words from a 4.33 million-

words vocabulary (single and bi/tri-gram words). Using this learned model, we can project the

textual name of any class into the V space to get its word vector representation. Unlike semantic

attributes, it is a ‘free’ semantic representation in that this process does not need any human

annotation. We next address how to project low-level features into these two spaces.

4.2.1 Learning the Projections of Semantic Spaces.

Mapping images and videos into a semantic space i requires a projection function f i : X → Y i.

This is typically realised by classifiers [LNH09] or regressors [SGS+13]. Using the auxiliary set

S, we train support vector classifiers fA(·) and support vector regressors f V(·) for each dimen-

sion of the attribute and word vectors respectively1. Then the target class instances XT have the

semantic projections: ŶAT = fA(XT ) and ŶVT = f V(XT ). However, these predicted intermediate

semantics have the projection domain shift problem as explained in Chapter 1. To solve this, we

learn a transductive multi-view semantic embedding space to align the semantic projections with

the low-level features of target data.

1Note that methods for learning projection functions for all dimensions jointly exist (e.g. [FCS+13])
and can be adopted in our framework.
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4.2.2 Transductive Multi-view Embedding.

We introduce a multi-view semantic alignment (i.e. transductive multi-view embedding) process

to correlate target instances in different (biased) semantic view projections with their low-level

feature view. This process alleviates the projection domain shift problem, as well as providing a

common space in which heterogeneous views can be directly compared, and their complemen-

tarity exploited then.

To learn an embedding space capable of rectifying the domain shift, we employ multi-view

Canonical Correlation Analysis (CCA) for nV views, with the target data representation in view

i denoted as Φi, a nT ×mi matrix. Specifically, in this work we project three views of each target

class instance fA(XT ), f V(XT ) and XT (i.e. nV = I +1 = 3) into a shared embedding space. The

three projection functions W i are learned by

min ∑
nV
i, j=1 Trace(W i

Σi jW j)

= ∑
nV
i, j=1 ‖Φ

iW i−Φ
jW j ‖2

F

s.t.
[
W i
]T

ΣiiW i = I
[
wi

k
]T

Σi jw j
l = 0

i 6= j,k 6= l i, j = 1, · · · ,nV k, l = 1, · · · ,nT (4.1)

where W i is the projection matrix which maps the view Φi (a nT row matrix) into the embedding

space and wi
k is the kth column of W i. Σi j is the covariance matrix between Φi and Φ j. The

optimisation problem above is multiconvex as long as Σii are non-singular. The local optimum

can be easily found by iteratively maximising over each W i given the current values of the other

coefficients as detailed in [HSST04].

The dimensionality of the embedding space is the sum of that of Φi, i.e. ∑
nV
i=1 mi – there is thus

likely feature redundancy. Since the importance of each dimension is reflected by its correspond-

ing eigenvalue [HSST04, GKIL13], we use the eigenvalues to weight the dimensions and define

a weighted embedding space Γ:

Ψ
i = Φ

iW i [Di]λ = Φ
iW iD̃i, (4.2)

where Di is a diagonal matrix with its diagonal elements set to the eigenvalues of each dimension

in the embedding space, λ is a power weight of Di and empirically set to 4 [GKIL13], and Ψi

is the final representation of the target data from view i in Γ. We index the nV = 3 views as

i ∈ {X ,V,A} for notational convenience. The same formulation can be used if more views are

available.
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4.2.3 Similarity in the Embedding Space.

The choice of similarity metric is important for high-dimensional embedding spaces [GKIL13].

In particular, extensive evidence in text analysis and information retrieval have shown that high-

dimensional embedding vectors are naturally directional and using cosine similarity provides

significant robustness against noise [BDGS05, GKIL13, HSST04]. Therefore for the subsequent

recognition and annotation tasks, we compute cosine distance in Γ by l2 normalisation: normal-

ising any vector ψψψ i
k ( the kth row of Ψi to unit length (i.e. ‖ ψψψ i

k ‖2= 1). Thus cosine similarity

is given by the inner product of any two vectors in Γ. Finally, equipped with a weighted and

normalised embedding space Γ, any two vectors can be directly compared no matter whether the

original view is X , A or V .

4.3 Recognition by Multi-view Hypergraph Label Propagation (TMV-HLP)

After alleviating the projection domain shift problem by multi-view embedding, we next intro-

duce a unified framework [FYH+14a] – TMV-HLP to fuse multiple views and transductively

exploit the manifold structure of the unlabelled target data to perform zero-shot, as well as N-

shot learning if sparse labelled samples for the target classes are available.

Each target class is defined by a single semantic prototype in each semantic view, which can

be a binary attribute vector, or the class name represented as a word vector in the word space.

Such class-level prototypes are effectively the expected mean for the distribution of this class in

semantic space, since the projection function f i aims at mapping each instance to be near to its

class prototype in each semantic view. Formally, we assume a target class c has a prototype yi
c

in each semantic view for zero-shot, and/or a few labelled instances for N-shot classification. To

exploit the learned embedding space Γ for recognition, we project three views of each unlabelled

target instance fA(XT ), f V(XT ) and XT as well as the target class prototypes into Γ 2. The

prototypes yi
c for views i ∈ {A,V} are projected as ψψψ i

c = yi
cW

iD̃i. So we have ψψψAc and ψψψVc for

the attribute and word vector prototypes of each target class c in Γ. In the absence of a prototype

for the (non-semantic) low-level feature view X , we synthesise it as ψψψXc = (ψψψAc +ψψψVc )/2.

Most or all of the target instances are unlabelled, so we leverage graph-based semi-supervised

learning to exploit the manifold structure of the unlabelled data in each view transductively for

classification. This differs from the conventional approaches such as direct attribute prediction

2Before being projected into Γ, the prototypes are updated by one-step self-training as in [FHXG13].
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(DAP) [LNH13] which essentially assume that the data distribution for each target class is Gaus-

sian or multinomial. Since the directional high-dimensional data in our embedding space lies on

a unit-sphere manifold [GY14], their assumptions are invalid and the proposed graph-based label

propagation algorithm is more appropriate. However, since our embedding space contains multi-

ple projections of the target data, it is hard to define a single graph that synergistically exploits the

manifold structure of all views. We therefore consider the generalised graph-based framework.

4.3.1 The Overview of Multi-view Hypergraph Label Propagation (TMV-HLP)
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Figure 4.2: An example of constructing heterogeneous hypergraphs. Suppose in the embedding

space, we have 14 nodes belonging to 7 data points A, B, C, D, E, F and G of two views – view i

(rectangle) and view j (circle). Data points A, B, C and D, E, F , G belong to two different classes

– red and green respectively. The multi-view semantic embedding maximises the correlations

(connected by black dash lines) between the two views of the same node. Two hypergraphs

are shown (Gi j at the left and Gi j at the right) with the heterogeneous hyperedges drawn with

red/green dash ovals for the nodes of red/green classes. Each hyperedge consists of two most

similar nodes to the query node.

We introduce the transductive multi-view hypergraph label propagation framework. Specif-

ically, thanks to the shared embedding space Γ, we construct heterogeneous hypergraphs across

views to combine/align the different manifold structures so as to further enhance the robustness

and exploit the complementarity of different views. These graphs become comparable and can

be connected by a Bayesian prior weight estimated from data. Given the constructed graphs, the
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initial label information from the prototypes (zero-shot) and/or the few labelled target data points

(N-shot) is then propagated to the unlabelled data by random walk on the graphs.

Before fully developing these two frameworks, we define the pairwise node similarity in the

embedding space Γ.

4.3.2 Pairwise Node Similarity

The key idea behind such graph-based methods is to group similar data points, represented as

vertices/nodes on a graph, into edges/hyperedges. With such edges/hyperedges, the pairwise sim-

ilarity between two data points is measured as the similarity between the two edges/hyperedges

that they belong to, instead of that between the two nodes only. Before that, pairwise similarity

between two graph nodes needs to be defined. In our embedding space Γ, each data point in each

view defines a node, and the similarity between any pair of nodes is:

ω(ψψψ i
k,ψψψ

j
l ) = exp(

< ψψψ i
k,ψψψ

j
l >

2

ϖ
) (4.3)

where < ψψψ i
k,ψψψ

j
l >

2 is the square of inner product between the ith and jth projections of nodes

k and l with a bandwidth parameter ϖ . Most previous work [RES13, ZB07] sets ϖ by cross

validation which is not possible for zero-shot learning. Inspired by [Lam09], a simple strategy

for setting ϖ is adopted: ϖ ≈ median
k,l=1,··· ,n

< ψψψ i
k,ψψψ

j
l >

2 in order to have roughly the same number of

similar and dissimilar sample pairs. This makes the edge weights from different pairs of nodes

more comparable. Note that Eq (4.3) defines the pairwise similarity between any two nodes

within the same view (i = j) or across different views (i 6= j).

The whole pipeline of TMV-HLP is illustrated in Figure 4.1. We next discuss how to con-

struct the multi-view heterogenous hypergraph and the corresponding label propagation by ran-

dom walk.

4.3.3 Heterogeneous Hyperedges

Given the multi-view projections of the target data, we aim to construct a set of across-views

heterogeneous hypergraphs Gc =
{
Gi j | i, j ∈ {X ,V,A} , i 6= j

}
. Within the set, a cross-view

heterogeneous hypergraph for views i and j (in that order) is denoted as Gi j =
{

Ψi,E i j,Ωi j
}

where Ψi is the node set in view i, E i j is the hyperedge set and Ωi j is the pairwise node similarity

set for the hyperedges. Given each node in i, denoted as ψψψ i
k, a hyperedge ei j

ψψψ i
k

is constructed by
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searching for similar nodes in view j. We thus have

E i j =
{

ei j
ψψψ i

k
| i 6= j, k = 1, · · ·nT + cT

}
(4.4)

where each hyperedge ei j
ψψψ i

k
includes the nodes in view j that are the nearest to node ψψψ i

k in view i

and the similarity set

Ω
i j =

{
∆

i j
ψψψ i

k
=
{

ω

(
ψψψ

i
k,ψψψ

j
l

)}
| i 6= j,ψψψ j

l ∈ ei j
ψψψ i

k
k = 1, · · ·nT + cT

}
(4.5)

where ω

(
ψψψ i

k,ψψψ
j
l

)
is computed using Eq (4.3). Since the hyperedge ei j

ψψψ i
k

intrinsically groups all

nodes in view j that are most similar to node ψψψ i
k in view i, we call ψψψ i

k the query node for hyper-

edge ei j
ψψψ i

k
. Similarly, G ji can be constructed by using nodes in j to query nodes in i. Therefore

given three views, we have six across view/heterogeneous hypergraphs. Figure 4.2 illustrates

two heterogeneous hypergrahs constructed from two views. Interestingly, our way of defining

hyperedges naturally corresponds to the star expansion [SJY08] where the query node (i.e. ψψψ i
k)

is introduced to connect each node in the hyperedge ei j
ψψψ i

k
.

4.3.4 Similarity Strength Between Hyperedge and Query Node

For each hyperedge, we measure its similarity strength with its query node which will be used

later to compute similarity between two hyperedges. Specifically, we use the weight δ
i j
ψψψ i

k
to

indicate the similarity strength of nodes connected within each heterogeneous hyperedge ei j
ψψψ i

k
.

Thus, we define δ
i j
ψψψ i

k
based on the mean similarity of the set ∆

i j
ψψψ i

k
for the hyperedge

δ
i j
ψψψ i

k
=

1

| ei j
ψψψ i

k
| ∑

ω(ψψψ i
k,ψψψ

j
l )∈∆

i j
ψψψi

k
,ψψψ

j
l∈ei j

ψψψi
k

ω

(
ψψψ

i
k,ψψψ

j
l

)
, (4.6)

where | ei j
ψψψ i

k
| is the cardinality of hyperedge ei j

ψψψ i
k
.

Due to the multi-view embedding step and the way of setting ϖ in Eq (4.3), the similarity sets

∆
i j
ψψψ i

k
and ∆

i j
ψψψ i

l
can generally be directly compared. Nevertheless, to make subsequent computation

more robust, we use the following normalisation of the similarity sets: (a) we assume ∀∆i j
ψψψ i

k
∈Ωi j

and ∆
i j
ψψψ i

k
should follow Gaussian distribution. Thus, we enforce zero-score normalisation to ∆

i j
ψψψ i

k
;

(b) We further assume that the retrieved similarity set Ωi j between all the queried nodes ψψψ i
k

(l = 1, · · ·nT ) from view i and ψψψ
j
l should also follow Gaussian distribution. So we again enforce

Gaussian distribution to the pairwise similarities between ψψψ
j
l and all query nodes from view i by

zero-score normalisation; (c) We select the first k highest values from ∆
i j
ψψψ i

k
as new similarity set

∆̄
i j
ψψψ i

k
for hyperedge ei j

ψψψ i
k
. ∆̄

i j
ψψψ i

k
is then used in Eq (4.6) in place of ∆

i j
ψψψ i

k
. This normalisation steps

aim to compute a more robust similarity between each pair of hyperedges.
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4.3.5 Pairwise Hyperedge Similarity

For each hyperedge there is an associated incidence matrix H i j =
(

h
(

ψψψ
j
l ,e

i j
ψψψ i

k

))
(nT+cT )×|E i j|

where

h
(

ψψψ
j
l ,e

i j
ψψψ i

k

)
=


1 i f ψψψ

j
l ∈ ei j

ψψψ i
k

0 otherwise
(4.7)

To take into consideration the similarity strength between hyperedge and query node, we ex-

tend the binary valued hyperedge incidence matrix H i j to soft-assigned incidence matrix SH i j =(
sh
(

ψψψ
j
l ,e

i j
ψψψ i

k

))
(nT+cT )×|E i j|

as follows

sh
(

ψψψ
j
l ,e

i j
ψψψ i

k

)
= δ

i j
ψψψ i

k
·ω
(

ψψψ
i
k,ψψψ

j
l

)
·h
(

ψψψ
j
l ,e

i j
ψψψ i

k

)
(4.8)

This soft-assigned incidence matrix is the product of three components: (1) the weight δψψψ i
k

for

hyperedge ei j
ψψψ i

k
; (2) the pairwise similarity computed using queried node ψψψ i

k; (3) the binary valued

hyperedge incidence matrix element h
(

ψψψ
j
l ,e

i j
ψψψ i

k

)
. To make the values of SH i j comparable among

the different heterogeneous views, we apply l2 normalisation to the soft-assigned incidence ma-

trix values for all node incident to each hyperedge.

Now for each heterogeneous hypergraph, we can finally define the pairwise similarity be-

tween any two nodes or hyperedges. Specifically for Gi j, the similarity between the oth and lth

nodes is

ω
i j
c

(
ψψψ

j
o,ψψψ

j
l

)
= ∑

ei j
ψψψi

k
∈E i j

sh
(

ψψψ
j
o,e

i j
ψψψ i

k

)
· sh
(

ψψψ
j
l ,e

i j
ψψψ i

k

)
. (4.9)

With the pairwise hyperedge similarity, one can now create the hypergraphs. In principle,

one could create a hypergraph where all hyperedges are exhaustively connected; however, that

is too costly for the subsequent label propagation task, so we use a k-nearest-neighbour (kNN)

graph [Zhu07]. In this work we set k = 30, which still can be varied from 10 ∼ 50 with little

effects in our experiments.

4.3.6 The Advantages of Heterogeneous Hypergraphs

We argue that the pairwise similarity of heterogeneous hypergraph is a distributed representation

[Ben09] in Eq (4.9). To explain it, we can use star extension [SJY08] to extend a hypergraph

into a traditional 2-graph. For each hyperedge ei j
ψψψ i

k
, the query node ψψψ i

k is used to compute the

pairwise similarity ∆
i j
ψψψ i

k
of all the nodes in view j. Each hyperedge can thus define a hyper-plane

by categorising the nodes in view j into two groups: strong and weak similarity group regarding
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to query node ψψψ i
k. In other words, the hyperedge set E i j is multi-clustering with linearly sep-

arated regions (by each hyperplane) per classes. Since the final pairwise similarity in Eq (4.9)

can be represented by a set of similarity weights computed by hyperedge, and such weights are

not mutually exclusive and are statistically independent, we consider the heterogeneous hyper-

graph a distributed representation. The advantage of having a distributed representation has been

studied by Watts and Strogatz [WS98, Wat04] which shows that such a representation gives rise

to better convergence rate and better clustering abilities. In contrast, the homogeneous hyper-

graphs adopted by previous work [HLZM10, FGZ+10, HYLC13] does not have this property

which makes them less robust against noise. In addition, fusing different views in the early

stage of graph construction potentially can lead to better exploitation of the complementarity of

different views. The advantages over homogeneous hypergraphs are validated by our experi-

ments. However, it is worth pointing out that (1) The reason we can query nodes across views

to construct heterogeneous hypergraph is because we have projected all views in the same em-

bedding space in the first place. (2) Hypergraphs typically gain robustness at the cost of losing

discriminative power – it essentially blurs the boundary of different clusters/classes by taking

average over hyperedges. A typical solution to this is to fuse hypergraphs with the conventional

2-graphs [FGZ+10, HYLC13], which is adopted in this work as well.

4.3.7 Label Propagation by Random Walk

Now we have two types of graphs: heterogeneous hypergraphs Gc =
{
Gi j
}

and 2-graphs G p ={
Gi
}

. Given three views (nV = 3), we thus have nine graphs in total (six hypergraphs and three

2-graphs). To propagate label information from prototypes/labelled nodes to other unlabelled

nodes, a classic strategy is random walk [ZB07]. We next define a random walk process within

and across graphs. A natural random walk on G = {G p;Gc} for two nodes k and l has the

following transition probability,

p(k→ l) = ∑
i∈{X ,V,A}

p
(
k→ l | Gi) · p(Gi | k

)
+ (4.10)

∑
i, j∈{X ,V,A},i 6= j

p
(
k→ l | Gi j) · p(Gi j | k

)
where

p
(
k→ l | Gi)= ω i

p(ψψψ
i
k,ψψψ

i
l)

∑o ω i
p(ψψψ

i
k,ψψψ

i
o)
, (4.11)
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and

p
(
k→ l | Gi j)= ω

i j
c (ψψψ

j
k,ψψψ

j
l )

∑o ω
i j
c (ψψψ

j
k,ψψψ

j
o)

and then the posterior probability to choose graph Gi at projection/node ψψψ i
k will be:

p(Gi|k) = π(k|Gi)p(Gi)

∑i π(k|Gi)p(Gi)++∑i j π(k|Gi j)p(Gi j)
(4.12)

p(Gi j|k) = π(k|Gi j)p(Gi j)

∑i π(k|Gi)p(Gi)+∑i j π(k|Gi j)p(Gi j)
(4.13)

where p(Gi) and p(Gi j) are the prior probability of graphs Gi and Gi j in the random walk.

This probability expresses prior expectation about the informativeness of each graph. The same

Bayesian model averaging [FHX+14a] can be used here to estimate these prior probabilities.

However, the computational cost is combinatorially increased with the number of views; and it

turns out the prior is not critical to the results of our framework. Therefore, uniform prior is used

in our experiments.

The stationary probabilities for node k in Gi and Gi j are

π(k|Gi) =
∑l ω i

p(ψψψ
i
k,ψψψ

i
l)

∑o ∑l ω i
p(ψψψ

i
k,ψψψ

i
o)

(4.14)

π(k|Gi j) =
∑l ω

i j
c (ψψψ

j
k,ψψψ

j
l )

∑k ∑o ω
i j
c (ψψψ

j
k,ψψψ

j
o)

(4.15)

Finally, the stationary probability across the multi-view hypergraph is computed as:

π(k) = ∑
i∈{X ,V,A}

π(k|Gi) · p(Gi)+ (4.16)

∑
i, j∈{X ,V,A},i 6= j

π(k|Gi j) · p(Gi j) (4.17)

Given the defined graphs and random walk process, we can derive our label propagation algo-

rithm (TMV-HLP). Let P denote the transition probability matrix defined by Eq (4.10) and Π

the diagonal matrix with the elements π(k) computed by Eq (4.16). The Laplacian matrix L

combines information of different views and is defined as: L= Π− ΠP+PT Π

2 . The label matrix Z

for labelled N-shot data or zero-shot prototypes is defined as:

Z(qk,c) =


1

−1

0

qk ∈ classc

qk /∈ classc

unknown

(4.18)
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Given the label matrix Z and Laplacian L, label propagation on multiple graphs has the closed-

form solution [ZB07] : Ẑ =η(ηΠ+L)−1ΠZ where η is a regularisation parameter3. Note that in

our framework, both labelled target class instances and prototypes are modelled as graph nodes.

Thus the difference between zero-shot and N-shot learning lies only on the initial labelled in-

stances: Zero-shot learning has the prototypes as labelled nodes; N-shot has instances as labelled

nodes; and a new condition exploiting both prototypes and N-shot together is possible. This uni-

fied recognition framework thus applies when either or both of prototypes and labelled instances

are available. The computational cost of our TMV-HLP is O
(
k · (cT +nT )

2 ·n2
V
)
, where k is the

number of nearest neighbours in the kNN graphs, and nV is the number of views.

4.4 Annotation and Beyond

Our multi-view embedding space Γ bridges the semantic gap between low-level features X and

semantic representations A and V . Leveraging this cross-view mapping, annotation [HGX11a,

WG07, GKIL13] can be improved and applied in novel ways. We consider three annotation tasks

here:

4.4.1 Instance Level Annotation

Given a new instance u, we can describe/annotate it by predicting its attributes. The conventional

solution is directly applying ŷAu = fA(xu) for test data xu [FEHF09, GKIL13]. However, as anal-

ysed before, this suffers from the projection domain shift problem. To alleviate this problem, our

multi-view embedding space aligns the semantic attribute projections with the low-level features

of each unlabelled instance in the target domain. Such an alignment can thus be used for image

annotations of the target domain. Thus, with our framework, we can now infer attributes for any

test instance via the learned embedding space Γ as ŷA
u = xuWX D̃X

[
WAD̃A

]−1.

4.4.2 Zero-shot Class Description

From a broader machine intelligence perspective, one might be interested to ask what are the

attributes of an unseen class, based solely on the class name. By virtue of our multi-view em-

bedding space, zero-shot class description can be performed to infer the semantic attribute de-

scription of a novel class. This zero-shot class description task could be useful, for example, to

hypothesise the zero-shot attribute prototype of a class instead of defining it by experts [LNH09]

3It can be varied from 1−10 with little effects in our experiments
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or ontology [FHXG13]. Our transductive embedding space enables this task by connecting se-

mantic word space (i.e. naming) and discriminative attribute space (i.e. describing). Given the

prototype yVc from the name of a novel class c, we compute ŷAc = yVc WVD̃V
[
WAD̃A

]−1 to gen-

erate the class-level attribute description.

4.4.3 Zero Attribute Learning

This task is the inverse of the previous task – to infer the name of class given a set of at-

tributes. It could be useful, for example, to validate or assess a proposed zero-shot attribute pro-

totype, or to provide an automated semantic-property based index into a dictionary or database.

To our knowledge, this is the first attempt for evaluating the quality of a class attribute pro-

totype because no previous work has directly and systematically linked linguistic knowledge

space with visual attribute space. Specifically given an attribute prototype yAc , we can use

ŷVc = ŷAc WAD̃A
[
WVD̃V

]−1 to name the corresponding class and perform retrieval on dictionary

words in V using ŷVc .

4.5 Experiments

4.5.1 Datasets And Settings.

We evaluate our framework on three widely used image/video attribute datasets: Animal with At-

tribute (AwA), Unstructured Social Activity Attribute (USAA), and Caltech-UCSD-Birds (CUB).

For detailed of these datasets, please refer to Chapter 2.1.6.

AwA [LNH09] consists of 50 classes of animals (30475 images) and 85 associated class-level

attributes. It has a standard source/target split for zero-shot learning with 10 classes and

6180 images held out as the target dataset. We use the same ’hand-crafted’ low-level

features (RGB colour histograms, SIFT, rgSIFT, PHOG, SURF and local self-similarity

histograms) released with the dataset (denoted as H); and the same multi-kernel learning

(MKL) attribute classifier from [LNH09].

USAA [FHXG13] is a video dataset with 69 instance-level attributes for 8 classes of complex

(unstructured) social group activity videos from YouTube. Each class has around 100

training and test videos respectively. USAA provides the instance-level attributes since

there are significant intra-class variations. We use the thresholded mean of instances from

each class to define a binary attribute prototype as in Chapter 3 as well as [FHXG13]. The
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same setting in Chapter 3 is adopted: 4 classes as source and 4 classes as target data. We

use exactly the same SIFT, MFCC and STIP low-level features for USAA as in [FHXG13].

CUB-200-2011 [WBW+11] contains 11,788 images of 200 bird classes. This is a more chal-

lenging dataset than AwA – it is designed for fine-grained recognition and has more classes

but fewer images. Each class is annotated with 312 binary attributes derived from the bird

species ontology. We use 150 classes as auxiliary data, holding out 50 as target data.

We extract 128 dimensional SIFT and colour histogram descriptors from regular grid of

multi-scale and aggregate them into image-level feature Fisher Vectors (F) by using 256

Gaussians, also as in [APHS13]. Colour histogram and PHOG features are also used to ex-

tract the global color and texture information from each image. Due to the recent progress

on deep learning based representations, we also extract the Overfeat (O) [SEZ+14]4 from

AwA and CUB as an alternative to H and F respectively. In addition, the Decaf (D)

[DJV+14] 5 feature is also considered for AwA.

We report absolute classification accuracy on USAA and mean accuracy for AwA and CUB

for direct comparison to published results. The word vector space is trained by the skip model

[MCCD13] with 1000 dimensions.

4.5.2 Recognition by Zero-shot Learning

Comparisons with state-of-the-art. We compare our method – TMV-HLP with most recent

state-of-the-art models that report results or can be reimplemented by us on the three datasets

in Table 4.1. They cover a wide range of approaches on utilising semantic intermediate rep-

resentation for zero-shot learning. They can be roughly categorised according to the semantic

representation(s) used: DAP and IAP ([LNH09], [LNH13]), M2LATM in Chapter 3 (as well as

[FHXG13]), ALE [APHS13], [RES13] and [WJ13] use attributes only; HLE/AHLE [APHS13]

and Mo/Ma/O/D [RSS+10] use both attributes and linguistic knowledge bases (same as us);

[YCF+13] uses attribute and some additional human manual annotation. Note that our linguistic

knowledge base representation is in the form of word vectors, which does not incur additional

manual annotation. Our method also does not exploit data-driven attributes such as M2LATM in

Chapter 3 (as well as [FHXG13]) and Mo/Ma/O/D [RSS+10].

4We use the trained model of Overfeat in [SEZ+14].
5Provided at http://attributes.kyb.tuebingen.mpg.de/.
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Approach AwA (H [LNH09]) AwA (O) AwA (O,D) USAA CUB (O) CUB (F )

DAP 40.5([LNH09]) / 41.4([LNH13]) / 38.4* 51.0* 57.1* 33.2([FHXG13]) / 35.2* 26.2* 9.1*

IAP 27.8([LNH09]) / 42.2([LNH13]) – – – – –

M2LATM (Chapter 3) 41.3 – – 41.9 – –

ALE/HLE/AHLE [APHS13] 37.4/39.0/43.5 – – – – 18.0

Mo/Ma/O/D [RSS+10] 27.0 / 23.6 / 33.0 / 35.7 – – – – –

PST [RES13] 42.7 54.1* 62.9* 36.2* 38.3* 13.2*

[WJ13] 43.4 – – – – –

[YCF+13] 48.3** – – – – –

TMV-HLP 49.0 73.5 80.5 50.4 47.9 19.5

Table 4.1: Comparison with the state-of-the-art on zero-shot learning on AwA, USAA and CUB.

Features H, O and F represent hand-crafted, OverFeat and Fisher Vector respectively. Mo, Ma,

O and D represent the highest results in the mined object class-attribute associations, mined at-

tributes, objectiveness as attributes and direct similarity methods used in [RSS+10] respectively.

‘–’: no result reported. *: our implementation. **: requires additional human annotations.

Let us first look at the results on the most widely used AwA. Apart from the results obtained

with the standard hand-crafted feature (H), we consider the more powerful Overfeat deep fea-

ture (O), and a combination of Overfeat and Decaf (O,D)6. Table 4.1 shows that (1) with the

same experimental settings and the same feature (H), our TMV-HLP outperforms the best re-

sult reported so far (48.3%) in [YCF+13] which requires additional human annotation to relabel

the similarities between auxiliary and target classes. In contrast, our method uses no additional

human annotation. (2) With the more powerful Overfeat feature, our method achieves 73.5%

zero-shot recognition accuracy. Even more remarkably, when both the Overfeat and Decaf fea-

tures are used in our framework, the result (see the AwA (O,D) column) is 80.5%. Even with

only 10 classes, this is an extremely good result given that we do not have any labelled samples

from target classes. Note that this result is not solely due to the feature strength, as the margin

between the conventional DAP and our TMV-HLP is much bigger indicating that our TMV-HLP

plays a critical role in achieving this result. We will have more in-depth analysis on this result

later. (3) Our method is also superior to the AHLE method in [APHS13] which also uses two

semantic spaces: attribute and WordNet hierarchy. Different from our embedding framework,

6With these two low-level feature views, there are six views in total in the embedding space.
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AHLE simply concatenates the two spaces. (4) Our method also outperforms the other alter-

natives of either mining other semantic knowledge bases (Mo/Ma/O/D [RSS+10]) or exploring

data-driven attributes (M2LATM in Chapter 3). (5) Among all compared methods, PST [RES13]

is the only one except ours that performs label propagation based transductive learning. It yields

better results than DAP in all the experiments which essentially does nearest neighbour in the

semantic space. TMV-HLP consistently beats PST in all the results shown in Table 4.1 thanks to

our multi-view embedding.

Table 4.1 also shows that on two very different datasets: USAA video activity, and CUB fine-

grained, our TMV-HLP significantly outperforms the state-of-the-art alternatives. In particular,

on the more challenging CUB, 47.9% accuracy is achieved on 50 classes (chance level 2%)

using the Overfeat feature. Considering the fine-grained nature and the number of classes, this

is even more impressive than the 80.5% result on AwA. It is also noted that again the advantage

of our TMV-HLP is even clearer when using the more powerful deep learning feature than the

conventional Fisher Vector feature (F).
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Figure 4.3: Effectiveness of transductive multi-view embedding. (a) zero-shot learning on AwA

using only hand-crafted features; (b) zero-shot learning on AwA using hand-crafted and deep

features together; (c) zero-shot learning on USAA. [V,A] indicates the concatenation of seman-

tic word and attribute space vectors. Γ(X +V) and Γ(X +A) mean using low-level+semantic

word spaces and low-level+attribute spaces respectively to learn the embedding. Γ(X +V+A)

indicates using all 3 views to learn the embedding.

4.5.3 Transductive multi-view embedding helps

To validate the contribution of our transductive multi-view embedding space we split up different

views with and without embedding and the results are shown in Fig. 4.3. In Figs. 4.3(a) and (c),

the hand-crafted feature H and Fisher Vector F are used for AwA and CUB respectively, and
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we compare V vs. Γ(X +V) , A vs. Γ(X +A) and [V,A] vs. Γ(X +V +A) (see the caption

of Figure. 4.3 for definitions). We use DAP for A and nearest neighbour for V and [V,A],

because the prototypes of V are not binary vectors so DAP cannot be applied. We use TMV-HLP

for Γ(X +V) and Γ(X +A) respectively. We highlight the following observations: (1) After

transductive embedding, Γ(X +V +A), Γ(X +V) and Γ(X +A) outperform [V,A], V and A

respectively. This means that the transductive embedding is helpful whichever semantic space is

used in rectifying the projection domain shift problem by aligning the semantic views with low-

level features. (2) The results of [V,A] are higher than those of A and V individually, showing

that the two semantic views are indeed complementary even with simple feature level fusion.

However, our TMV-HLP on all views Γ(X +V+A) improves individual embeddings Γ(X +V)

and Γ(X +A).

4.5.3.1 Embedding deep learning feature views also helps and the more views the better

In Fig. 4.3(b) three different low-level features are considered for AwA: hand-crafted (H), over-

feat (O) and decaf features (D). The zero-shot learning results of each individual space are

indicated as VH, AH, VO, AO, VD, VD in Figure 4.3(b) and we observe that VO > VD > VH

and AO > AD > AH. That is Overfeat > Decaf > hand-crafted features. It is widely reported

that deep features have better performance than ’hand-crafted’ features on many computer vi-

sion benchmark datasets [SEZ+14, CSVZ14]. What is interesting to see here is that Overfeat

> Decaf since both are based on the same Convolutional Neural Network (CNN) model of

[KSH12]. Apart from implementation details, one significant difference is that Decaf is pre-

trained by ILSVRC2012 while Overfeat by ILSVRC2013 which contains more animal classes

meaning better (more relevant) features can be learned. It is also worth pointing out that

1. with both Overfeat and Decaf features, the number of views to learn embedding space

doubles from 3 to 6; and our results suggest that the more views, the better chance to solve

the domain shift problem and the data become more separable as different views contain

complementary information;

2. Figure 4.3(b) shows that when all 9 available views (XH, VH, AH, XD, VD, AD, XO, VO

and AO) are used for embedding, the result is significantly better than those from from

each individual view. Nevertheless, it is lower than that obtained by embedding views

(XD, VD, AD, XO, VO and AO). This suggests that view selection may be required when

a large number of views are available for learning the embedding space. However this is
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non-trivial for zero-shot learning as there is no validation set.

4.5.3.2 Embedding makes different classes more separable

We employ t-SNE [vdMH08] to visualise the space XO, VO, AO and Γ(X +A+ V)O,D in

Figure. 4.4. We use the same default parameters of t-SNE7 for each individual space.

It shows that even in the powerful Overfeat view, the 10 target classes are heavily overlapped

(Figure. 4.4(a)). It gets better in the semantic views (Figure. 4.4(b) and (c)). However, when all

6 views are embedded, all classes are clearly separable (Figure 4.4(d)).
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Figure 4.5: Comparing alternative label propagation methods. The methods differ in the graph

models used (see text for details).

4.5.3.3 Heterogeneous hypergraph vs. other graphs

Apart from transductive multi-view embedding, our another major contribution is a novel la-

bel propagation method based on heterogeneous hypergraphs. To evaluate the effectiveness

of our hypergraph label propagation, we compare with a number of alternative label propaga-

tion methods using other graph models. More specifically, within each view, two alternative

graphs can be constructed: 2-graphs which are used in the classification on multiple graphs (C-

MG) model [ZB07], and conventional homogeneous hypergraph formed in each single view

[ZHS06, FGZ+10, LLS+13]. Since hypergraphs are typically combined with 2-graphs, we

have 5 different multi-view graph models: 2-gr (2-graph in each view), Homo-hyper (homo-

geneous hypergraph in each view), Hete-hyper (our heterogeneous hypergraph across views),

Homo-hyper+2-gr (homogeneous hypergraph combined with 2-graph in each view), and Hete-

hyper+2-gr (our heterogeneous hypergraph combined with 2-graph, as in our TMV-HLP). In our

experiments, the same random walk label propagation algorithm is run on each graph in AwA

and USAA before and after transductive embedding to compare these models.
7Similar visualisation schemes such as isomap, MDS and sammon mapping can also be used here;

however, t-SNE is shown more robust than these methods in [vdMH08].
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From the results in Figure 4.5, we observe that:

1. The graph model used in our TMV-HLP (Hete-hyper+2-gr) yields the best performance

on both datasets.

2. All graph models benefit from the embedding. In particular, the performance of our het-

erogeneous hypergraph degrades drastically without embedding. This is expected because

before embedding, nodes in different views are not aligned; so forming meaningful hyper-

edges across views is not possible.

3. Fusing hypergraphs with 2-graphs helps – as discussed above, one has the robustness and

the other has the discriminative power, so it makes sense to combine the strengths of both.

4. After embedding, on its own, heterogeneous graphs are the best while homogeneous hyper-

graphs (Homo-hyper) are worse than 2-gr meaning the discriminative power by 2-graphs

over-weighs the robustness of homogeneous hypergraphs.
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Figure 4.6: N-shot learning results.

4.5.3.4 Qualitative results

Figure 4.7 shows qualitative results for zero-shot learning on AwA in terms of top 5 most likely

classes predicted for each image. TMV-HLP produces more reasonable ranked list of classes for

each image.

4.5.3.5 Running time

Our TMV-HLP algorithm is computationally efficient. For example, our pipeline of using hand-

crafted features on AwA dataset takes less than 30 minutes on a platform with six 2.66-GHz CPU

cores for the zero-shot learning classification task (over 6,180 images). This includes the time

for multi-view CCA embedding and label propagation using our heterogeneous hypergraphs.
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Figure 4.7: Qualitative results for zero-shot learning on AwA.

4.5.4 N-Shot learning

N-shot learning experiments are carried out on the three datasets with the number of target class

instances labelled (N) ranging from 0 (zero-shot) to 20. We also consider the situation [RES13]

where both a few training examples and a zero-shot prototype may be available (denoted with

suffix +), and contrast it to the conventional N-shot learning without the prototypes (denoted with

suffix −). For comparison, PST+ is the method in [RES13] which uses prototypes for the initial

label matrix. SVM+ and M2LATM- are the SVM and M2LATM methods used in [LNH13]

and Chapter 3 respectively. For fair comparison, we modify the SVM- used in [LNH13] into

SVM+. Note that our TMV-HLP can be used in both conditions but the PST method [RES13]

only applies to the + condition. All experiments are repeated for 10 rounds with the average

results reported. Evaluation is done on the remaining unlabelled target data. From the results

shown in Figure 4.6, it can be seen that:

(1) TMV-HLP+ always achieves the best performance, particularly given few training

examples.

(2) The methods that explore transductive learning via label propagation (e.g., TMV-

HLP+, TMV-HLP-, and PST+) are clearly superior to those that do not (e.g., SMV+

and M2LATM-).

(3) On AwA, PST+ outperforms TMV-HLP- with less than 3 instances per class. Be-
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cause PST+ exploits the prototypes, this suggests that a single good prototype is

more informative than a few labelled instances in N-shot learning. This also explains

why sometimes the N-shot learning results of TMV-HLP+ are worse than its zero-

shot learning results when only few training labels are observed (e.g. on AwA, the

TMV-HLP+ accuracy goes down before going up when more labelled instances are

added). Note that when more labelled instances are available, TMV-HLP- starts to

outperform PST+, because it combines the different views of the training instances,

and the strong effect of the prototypes is eventually outweighed.

4.5.5 Annotation And Beyond

In this section we evaluate our multi-view embedding space for the conventional and novel an-

notation tasks introduced in Sec. 4.4.

4.5.5.1 Instance annotation by attributes

To quantify the annotation performance, we predict attributes/annotations for each target class

instance for USAA, which has the largest instance level attribute variations among the three

datasets. We employ two standard measures: mean average precision (mAP) and F-measure

(FM) between the estimated and true annotation list. Using our multi-view embedding space,

our method (FM:0.341, mAP: 0.355) outperforms significantly the baseline of directly estimating

yAu = fA(xu) (FM:0.299, mAP: 0.267).

4.5.5.2 Zero-shot description

In this task, we explicitly infer the attributes corresponding to a specified novel class, given only

the textual name of that class without seeing any visual samples. Table 4.3 illustrates this for

AwA. Clearly most of the top/bottom 5 attributes predicted for each of the 10 target classes are

meaningful (in the ideal case, all top 5 should be true positives and all bottom 5 true negatives).

Quantitatively, given the top-5 attributes predicted for each class, a F-measure of 0.236 is ob-

tained. In comparison, if we directly select the 5 nearest attribute name projection to the class

name projection (prototype) in the word space, the F-measure value becomes 0.063, demon-

strating the importance of learning the multi-view embedding space. In addition to providing

a method to automatically – rather than manually – generate an attribute ontology, this task is

interesting because even a human could find it very challenging (effectively a human has to list

the attributes of a class which he has never seen or been explicitly taught about, but has only seen
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mentioned in text).

4.5.5.3 Zero-attribute learning

In this task we attempt the reverse of the previous experiment: inferring a class name given a

list of attributes. Table 4.2 illustrates this for USAA. Table 4.2(a) shows queries in USAA (note

that class name is shown for brevity, but it is the attributes of those classes that are queried) and

the top-4 ranked list of classes returned. The estimated class names of each attribute vector are

reasonable – the top-4 words are either the class name or related to the class name. A baseline

is to use the textual names of the attributes projected in the word space (using the sum of their

word vectors) to search for the nearest class in the word space, instead of the embedding space.

Table 4.2(a) shows that the predicted classes in this case are still reasonable, but significantly

worse than querying via the embedding space. To quantify this we evaluate the average rank

of the true name for each USAA class when queried by its attributes. For querying by embed-

ding space, the average rank of the true class is an impressive 2.13 (out of 4.33M words with

a chance-level rank of 2.17M), compared with the average rank of 110.24 by directly querying

word space [MCCD13] with textual descriptions of the attributes. Table 4.2(b) shows an example

of “incremental” query using the ontology definition of birthday party defined in Chapter 3. We

first query the wrapped presents attribute only, followed by adding small balloon and all other

attributes (birthday songs and birthday caps). The changing list of top ranked retrieved words

intuitively reflects the expectation of the combinatorial meaning of the attributes.

(a) Query via embedding space Query attribute words in word space

graduation party party, graduation, audience, caucus cheering, proudly, dressed, wearing

music_performance music, performance, musical, heavy metal sing, singer, sang, dancing

wedding_ceremony wedding_ceremony, wedding, glosses, stag nun, christening, bridegroom, wedding_ceremony

(b) Attribute Query Top Ranked Words

wrapped presents music; performance; solo_performances; performing

+small balloon wedding; wedding_reception; birthday_celebration; birthday

+All attributes birthday_party; prom; wedding reception

Table 4.2: Zero-attribute learning on USAA. (a) Querying class names by attributes of classes.

(b) An incrementally constructed attribute query for the birthday_party class. Bold indicates true

positive words retrieved.
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4.6 Summary

We identified the challenge of projection domain shift in zero-shot learning and presented a new

framework to solve it by rectifying the biased projections in a multi-view embedding space. We

also proposed a novel label-propagation algorithm TMV-HLP based on heterogeneous across-

view hypergraphs. TMV-HLP synergistically exploit multiple intermediate semantic represen-

tations, as well as the manifold structure of unlabelled target data to improve recognition in

a unified way for zero shot, N-shot and zero+N shot learning tasks. As a result we achieved

state-of-the-art performance on the challenging AwA, CUB and USAA datasets. Finally, we

demonstrated that our framework enables novel tasks of relating textual class names and their

semantic attributes.
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AwA Attributes

pc
T-5 active, furry, tail, paws, ground.

B-5 swims, hooves, long neck, horns, arctic

hp
T-5 old world, strong, quadrupedal, fast, walks

B-5 red, plankton, skimmers, stripes, tunnels

lp
T-5 old world, active, fast, quadrupedal, muscle

B-5 plankton, arctic, insects, hops, tunnels

hw
T-5 fish, smart, fast, group, flippers

B-5 hops, grazer, tunnels, fields, plains

seal
T-5 old world, smart, fast, chew teeth, strong

B-5 fly, insects, tree, hops, tunnels

cp
T-5 fast, smart, chew teeth, active, brown

B-5 tunnels, hops, skimmers, fields, long neck

rat
T-5 active, fast, furry, new world, paws

B-5 arctic, plankton, hooves, horns, long neck

gp
T-5 quadrupedal, active, old world, walks, furry

B-5 tunnels, skimmers, long neck, blue, hops

pig
T-5 quadrupedal, old world, ground, furry, chew teeth

B-5 desert, long neck, orange, blue, skimmers

rc
T-5 fast, active, furry, quadrupedal, forest

B-5 long neck, desert, tusks, skimmers, blue

Table 4.3: Zero-shot description of the 10 AwA target classes. The embedding space is learned

using 6 views (XD, VD,AD, XO, VO andAO). The true positives are highlighted in bold. lp, pc,

hp, hw, gp, rc and cp are short for leopard, Persian cat, hippopotamus, humpback whale, giant

panda, raccoon, and chimpanzee respectively.
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Chapter 5

Robust Learning of Relative Attributes

Attributes can be annotated at the instance-level or class-level. The instance-level attribute an-

notation is more desirable for the transfer learning problems, since more semantic information

is labelled for each instance. Nevertheless, it is impossible to collect a large number of instance

annotations if only in the laboratory environment. As a result, some crowdsourcing tools are

employed for example, Amazon Mechanical Turk (AMT). Each instance is thus annotated by

users to indicate the presence/absence of certain properties in the image or video. Nevertheless,

such ’binary’ attributes are not intrinsically versatile enough to express more ’specific’ semantic

meanings, for example, the relative information of any two instances.

From a much broader perspective, relative attribute is one special type of subjective visual

properties; and this chapter actually studies the problems of robustly estimating subjective visual

properties, which nevertheless encompass a variety of important applications. For example: esti-

mating attractiveness [PG11b] from faces would interest social media or online dating websites;

and estimating properties of consumer goods such as shininess of shoes [KPG12] improves cus-

tomer experiences on online shopping websites. Recently, the problem of automatically predict-

ing if people would find an image or video interesting has started to receive increasing attention

[DOB11, GGR+13, JYF+13]. Interestingness prediction has a number of real-world applica-

tions. In particular, since the number of images and videos uploaded to the Internet is growing

explosively, people are increasingly relying on image/video search engines or recommendation

tools to select which ones to view. Given a query, ranking the retrieved data with relevancy to

the query based on the predicted interestingness would improve the user satisfaction. Similarly
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user stickiness can be increased if a media-sharing website such as YouTube can recommend

videos that are both relevant and interesting. Other applications such as web advertising and

video summarisation can also benefit. Subjective visual properties such as the above-mentioned

ones are useful on their own. But they can also be used as an intermediate representation for

other tasks such as visual recognition, e.g., different people can be recognised by how pale their

skin complexions are and how chubby their faces look like [PG11b]. When used as a semanti-

cally meaningful representation, these subjective visual properties often are referred to as relative

attributes [KPG12, PG11b, ZWX+13].

To capture more general semantic relationships and better understand complex multi-modal

visual data, relative attributes were recently introduced as a richer semantic representation cor-

responding to the strengh of visual properties and used to describe relative information of any

two instances. Such relative attributes are annotated by crowdsourcing tools e.g. AMT. The la-

belling process is more scalable and economic than the conventional laboratory annotation, but

this crowdsourced labelling still suffers from sparsity and outliers problems, which are detailed

in Chapter 1.2.5 and this chapter recaps below,

Sparsity: The number of pairwise comparisons required is much bigger than the number of

data points because n instances defining a O(n2) pairwise space. Consequently, even with

crowdsourcing tools, the annotation remains be sparse, i.e. not all pairs are compared and

each pair is only compared a few times.

Outliers: The crowd is not all trustworthy: it is well known that crowdsourced data are greatly

affected by noise and outliers [CB13, WHG11, LHK13] which can be caused by a number

of factors. Some workers may be lazy or malicious [KCS08], providing random or wrong

annotations either carelessly or intentionally; some other outliers are unintentional human

errors caused by the ambiguous nature of the data, thus are unavoidable regardless how

good the attitudes of the workers are.

It is thus a challenge to robustly learn relative attributes from crowdsourced pairwise compar-

isons.

In this chapter, we propose a more principled way to identify annotation outliers by formu-

lating the relative attribute prediction task as a unified robust learning to rank problem, tackling

both the outlier detection and the prediction tasks jointly. Different from previous work which
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replies on majority voting or statistical-based algorithms to prune the outliers and make the an-

notation less subjective and more reliable, our method operates globally, integrating all local

pairwise comparisons together to minimise a cost that corresponds to global inconsistency of

ranking order. This enables us to identify outliers that receive majority votes and yet cause large

global ranking inconsistency and thus should be removed. Extensive experiments in this chap-

ter on several benchmark datasets demonstrate that our new approach significantly outperforms

state-of-the-art alternatives.

The main content of this Chapter has been previously published in

1. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Shaogang Gong and Yuan Yao. “Inter-

estingness Prediction by Robust Learning to Rank” European Conference on Computer

Vision (ECCV) 2014;

2. Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Shaogang Gong, Yizhou Wang and

Yuan Yao.“Robust Subjective Visual Property Prediction from Crowdsourced Pairwise La-

bels”submitted to IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI);

5.1 A Unified Robust Learning to Rank (URLR) Framework

We aim to learn an relative attribute prediction model from a set of sparse and noisy pairwise

comparisons, each comparison corresponding to a local ranking between a pair of images or

videos. A Unified Robust Learning to Rank (URLR) framework is proposed for such purpose in

this section.

5.1.1 Problem Setup

Suppose our training set has I data points/instances represented by a low-level feature matrix

Φ =
[
φ T

i
]I

i=1 ∈ RI×d , where φi is a d-dimensional column feature vector for representing instance

i. The annotations or data labels are represented as an annotation matrix Y . In particular, assume

each pair of instances on average receive K votes by annotators. We will have Y k
i j = 1 if the

k-th vote indicates that instance i is more interesting than instance j, and Y k
ji = 1 otherwise.

The annotation matrix is then constructed as Yi j =
1
K ∑k Y k

i j. These pairwise comparisons can

be naturally represented by a directed graph G = (V,E) with node set V = {i}I
i=1 and edge set

E = {i→ j|Yi j > 0}. That is, an edge i→ j exists if Yi j > 0.
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Given the training data Φ and Y , there are two tasks: (1) removing the outliers in Y and (2)

estimating a prediction function for the relative attribute values. In this Chapter a linear function

is considered due to its low computational complexity, that is, given the low-level feature φx of a

test instance x we use a linear function f (x) = β T φx to predict its relative attribute values, where

β is the coefficient weight vector of the low-level feature φx. All formulations can be easily

updated to use a non-linear function.

Note that the annotation matrix Y is not symmetric – in an ideal case, one hopes that the votes

received on each pair are unanimous, e.g. Yi j > 0 and Yji = 0; but often there are disagreements,

i.e. both Yi j > 0 and Yji > 0. Assuming both cannot be true simultaneously, one of them will

be an outlier. In this case, one is the majority and the other minority which will be pruned by

the majority voting method. This is why majority voting is a local outlier detection method and

requires as many votes per pair as possible to be effective (the wisdom of a crowd). Note that

Yi j and Yji indicate the contradictory voting and it is also possible that both Yi j and Yji can be

removed in our framework.

5.1.2 Framework Formulation

We propose to prune outliers globally. To this end, we introduce an unknown variable γi j for each

element of Y which indicates whether Yi j is an outlier. We thus aim to estimate both γi j for outlier

detection and β for the relative attribute value prediction in a unified framework. Specifically,

for each edge i→ j ∈ E, Yi j is modelled as,

Yi j = β
T

φi−β
T

φ j + γi j + εi j (5.1)

where Gaussian noise εi j ∼N (0,σ2) with the variance σ ; γi j ∈ R is a sparse symmetric outlier

variable which has higher magnitude than σ . When γi j 6= 0, Yi j is taken as an outlier. For an

edge i→ j, if Yi j is not an outlier, we expect β T φi− β T φ j should be approximately equal to

Yi j, therefore we have γi j = 0. On the contrary, when the prediction of β T φi − β T φ j differs

greatly from Yi j, we can explain Yi j as an outlier and compensate for the discrepancy between the

prediction and the annotation with a nonzero value of γi j. The only prior knowledge we have on

γi j is that it is a sparse variable, i.e. in most cases γi j = 0.

For the whole training set, Eq (5.1) is written in its matrix form

Y =CΦβ +Γ+ ε (5.2)
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where Y = [Yi j], Γ = [γi j], ε = [εi j] and C is the incident matrix of the directed graph G, where

Cie =−1/1 if the edge e leaves/enters vertex i.

In order to estimate the I2+d unknown parameters (I2 for Γ and d for β ), we aim to minimise

the discrepancy between the annotation Y and our prediction CΦβ +Γ, as well as keeping the

outlier estimation Γ sparse. To that end, we put a l2−loss on the discrepancy and a l1− penalty

on the outlier variables as a regularisation measure. This gives us the following cost function:

min
β ,Γ

1
2
‖Y −CΦβ −Γ‖2

2 +λ‖Γ‖1 (5.3)

:= ∑
i→ j∈E

[
1
2
(Yi j− γi j−β

T
φi +β

T
φ j)

2 +λ |γi j|
]

(5.4)

where λ is a free parameter corresponding to the weight for the regularisation term. With this cost

function, our Unified Robust Learning to Rank (URLR) framework identifies outliers globally by

integrating all local pairwise comparison together.

To solve Eq (5.3), we rewrite the cost function as,

L(β ,Γ) =
1
2
‖Y −Xβ −Γ‖2

2 +λ‖Γ‖1. (5.5)

where X =CΦ. With ∂L
∂β

= 0, we have

β̂ = (XT X)†XT (Y −Γ). (5.6)

The Moore-Penrose pseudo-inverse of XT X is equivalent to the limit of ridge regression solution:

(XT X)† = lim
µ→0

((XT X)T · (XT X)+ µ1)−1(XT X)T , where 1 is the identity matrix. To avoid nu-

merical instability in many practical applications, we can replace the pseudo-inverse with ridge

regression by setting µ > 0. The standard solvers for Eq (5.6) will require O(I3) computational

complexity. To reduce the complexity, the Krylov iterative and algebraic multi-grid methods

[HKW10] can be used.

Now plugging the solution of β̂ back into Eq (5.5) and defining the hat matrix H = H(X) =

X(XT X)−1XT , we have

Γ̂ = argmin
Γ
‖Y −Γ−H(Y −Γ)‖2

2 +λ ‖ Γ ‖1 (5.7)

The first term in Eq (5.7) is L2− loss of the residuals of the observations Y − Γ without the

outliers Γ which is: r = Y −Γ−H(Y −Γ) = (I−H)(Y −Γ). Eq (5.12) is thus simplified into

into intervening sub-problems: outlier detection in (5.7) and estimation of β using (5.6). And

Eq (5.7) does not rely on the estimation of β̂ . Note that for large-scale dataset with large-size
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X matrix, it usually means very high computational cost for the hat matrix H. Thus, for outlier

detection part in (5.7), we can further simplify Eq (5.7) by Singular Value Decomposition (SVD),

X =UΣAT (5.8)

where U = [U1,U2] with U1 an orthogonal basis of the column space of X (i.e. im(X)) and U2 the

orthogonal basis of the kernel space of X (i.e. Ker
(
XT
)
)1. So we have UT

2 U2 = I and U2X = 0

(i.e. U2H = 0). A is the conjugate transpose of U . So the first part in Eq (5.7) can be simplified

as,

‖Y −Γ−H(Y −Γ)‖2
2

= (Y −Γ−H(Y −Γ))TUT
2 U2(Y −Γ−H(Y −Γ))

= (U2(Y −Γ−H(Y −Γ))T (U2(Y −Γ−H(Y −Γ))

= (U2Y −U2Γ)T (U2Y −U2Γ)

= ‖UT
2 Y −UT

2 Γ‖2
2

Eq (5.7) is now a standard Least Absolute Shrinkage and Selection Operator (LASSO) esti-

mator [FL01],

Γ̂ = argmin
Γ
‖UT

2 Y −UT
2 Γ‖2

2 +λ‖Γ‖1 (5.9)

5.1.3 The Advantage of URLR Over Majority Voting

Figure 5.1(a) illustrates why our URLR framework is advantageous over the local majority voting

method for outlier detection. Assume there are five images A− E with five pairs compared

three time each, and the correct ranking order of these 5 images in terms of interestingness is

A < B < C < D < E. Figure 5.1(a) shows that among the five compared pairs, majority voting

can successfully identify four outlier cases: A > B, B > C, C > D, and D > E, but not the fifth

one E < A. However when considered globally, it is clear that E < A is an outlier because if we

have A < B <C < D < E, we can deduce A < E. Our formulation can detect this tricky outlier.

More specifically, if the estimated β makes β T φA−β T φE > 0, it has a small local inconsistency

cost for that minority vote edge A→ E. However, such β value will be ‘propagated’ to other

images by using the voting edges B→ A, C→ B, D→ C, and E → D, which are accumulated

into much bigger global inconsistency with the annotation. This makes our model detect E→ A

1Note that SVD is one of the most common ways to solve the orthogonal basis U2 of kernel space
Ker

(
XT
)
.
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Figure 5.1: Better outlier detection can be achieved using our URLR framework than majority

voting. Green arrows indicate correct annotations, while red arrows are outliers.

as an outlier, contrary to the majority voting decision. In particular, the majority voting will

introduce a loop comparison A < B < C < D < E < A which is the well-known Condorcet’s

paradox [Geh83]. We further give two more extreme cases in Fig. 5.1(b) and (c). Due to such

Condorcet’s paradox, in Fig. 5.1(b) the estimated β from majority voting is even worse than that

from all annotation pairs which at least save the right annotation A→ E. Furthermore, Fig. 5.1(c)

shows that when each pair only receives votes along one direction, majority voting will cease to

work altogether, but our URLR can still detect outliers by examining the global cost.

5.1.4 Connection to Robust Ranking

Our formulation can be taken as one special case of Huber-Lasso2. We discuss the connections

in this section. Huber [Hub81] proposed the following robust ranking (in regression form) with

Huber’s loss function

min
β

∑
i, j

ρλ (Y −CΦβ ) (5.10)

=min
β

∑
i, j

ρλ (β
T (φi−φ j)−Yi j) (5.11)

where the Huber’s loss function ρλ (x) is defined as

ρλ (x) =

 x2/2, if |x| ≤ λ

λ |x|−λ 2/2, if |x|> λ .

When |β T (φi− φ j)−Yi j| < λ , the comparison is taken as a ‘good’ one and penalized by

l2−loss for Gaussian noise. Otherwise, it is regarded as the sparse outlier and penalized by

2Usually, Huber-Lasso is only for ranking problems, while ours is a learning to rank problem.
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l1−loss. The Huber M-estimator is equivalence to Huber-Lasso [Gan07] in Eq (5.3). Specifically,

given the annotation Y of the training data, Huber-LASSO estimates the global ranking order θ

by

θ̂ = minθ

1
2
‖Y −Cθ −Γ‖2

2 +λ ‖ Γ ‖1 (5.12)

:= ∑(i, j)∈E

[
1
2
(Yi j− γi j−θi +θ j)

2 +λ |γi j|
]

where θi is the ranking score for instance i. Eq (5.12) is equivalent to the robust regression

problem with Huber’s loss function [Hub81], and is called Huber-LASSO.

Our URLR model is extended from Huber-LASSO for the ability of predicting the relative

attribute values. It introduces the prediction model parameter β estimated as β̂ = Φ†θ̂ , where †

indicates the moore-penrose pseudo inverse. But this is not the most critical differences – one

could still use Huber-LASSO to remove outliers and then use the same Eq (5.12) to estimate β .

The more important difference is that URLR can better identify outliers, especially for sparse

graphs. More specifically, to solve Eq (5.12), a similar formulation as Eq (5.9) can be used,

solved by the same regularisation path method as in URLR. However, instead of SVD decom-

posing X in Eq (5.8), for Huber-LASSO, the matrix C is decomposed. This means the solution

space of Eq (5.12) is dim(Γ) = |E|− I + 1 where |E| is the number of pairs compared and I is

the number of graph nodes, i.e. training images or videos. Given a sparse dataset, this space is

very small. In contrast, URLR enlarges dim(Γ) by including the subspace of the original node

space orthogonal to the feature space (Eq (5.9)). This means the solution space of Eq (5.9) is

dim(Γ)≈ |E|−d. When the feature dimension d is smaller than the number of images/videos I,

the dimension of the solution space of Γ for URLR is higher than that of Huber-LASSO, leading

to better outlier detection capability. Typically, we have d < I in a large dataset; however if not,

it can be made so by reducing the feature dimension.

5.2 Solution of URLR by Regularisation Path

5.2.1 Problem Decomposition and Outlier Detection by Regularisation Path

Note that tuning the regularisation parameter λ in Eq (5.9) is notoriously difficult [SO11, Hub81,

FL01]. Especially in our URLR framework, the λ value directly decides the ratio of outliers

detected and the ratio is unknown. A number of methods for determining λ exist, but none is

suitable for our formulation: (1) some heuristics rules like λ = 2.5σ̂ are popular in existing
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robust ranking models such as the M-estimator [Hub81]3. However setting a constant λ value

independent of dataset is far from optimal because the ratio of outliers may vary for different

crowdsourcing experiments. (2) Cross validation is also not applicable here because each edge

i→ j is associated with a γi j variable and any held-out edge i→ j also corresponds to an unknown

variable γi j. As a result, cross validation can only optimise part of the sparse variables while

leaving those for the held-out validation set undetermined. (3) The other alternatives e.g. Akaike

information criterion (AIC) and Bayesian information criterion (BIC) employ the relative quality

and likelihood functions of the statistical models as the criterion for parameter selections. These

statistical criteria however have no direct connection to the outliers pruned. Ideally λ should be

a data-dependent parameter which selects a cut-off value and corresponds to the pruning rate p

as the portion of the outliers among all comparisons.

This inspires us to sequentially consider all available solutions for all sparse variables along

the Regularisation Path (RP) by gradually decreasing the value of the regularisation parameter

λ from ∞ to 0. Specifically, based on the piecewise-linearity property of LASSO [FL01], RP

can be efficiently computed by Least Angle Regression (LARS [EHJT04]). When λ =∞, the

regularisation parameter will strongly penalise outlier detection: if any annotation is taken as an

outlier, it will greatly increase the value of the object function in Eq (5.9). When λ is changed

from ∞ to 0, LASSO4 will first select the variable subset accounting for the highest variances

to the observations UT
2 Y in Eq (5.9). These high variances should be assigned higher priority

to represent the nonzero elements5 of Γ of Eq (5.2), because Γ compensates the discrepancy

between annotation and prediction. Based on this idea, we can order the edge set E by the λ

values according to which nonzero γi j appears first when λ is decreased from∞ to 0. In other

words, if an edge γi j becomes nonzero at a larger λi j value, it has a higher probability to be an

outlier. Following this order, we identify the top p% edge set Λp as the annotation outliers. And

its complementary set Λ1−p = E \Λp are the inliers. Therefore, the outcome of estimating Γ

using Eq (5.9) is a binary outlier indication matrix FΓ =
[
Fγi j

]
:

Fγi j =


1 i→ j ∈ Λ1−p

0 i→ j ∈ Λp

3σ̂ is a Gaussian variance and is manually set by human prior knowledge.
4For a thorough discussion from a statistical perspective, please read [FL01, FTS12, EHJT04, SO11].
5This is related with LASSO for covariate selection in a graph. Please read [MB06] for more details.
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Algorithm 1 Learning a unified robust learning to rank model.
Input: A training dataset Φ with pairwise annotation Y and an outlier pruning rate p%.

Output: Detection of outliers FΓ and prediction model parameter β .

1. Perform SVD on X using Eq (5.8);

2. Solve Eq (5.9) using Regularisation Path;

3. Take the top p% pairs as outliers and estimate the outlier indicator matrix FΓ;

4. Compute β using Eq (5.13).

where each element Fγi j indicates whether the corresponding edge i→ j is an outlier or not. With

this matrix, β can be solved by

β = (XT X)†XT (Y �FΓ) (5.13)

where� is the Hardmard product and FΓ =
[
Fγi j

]
. The pseudo-code of learning our URLR model

is shown in Alg. 1. Note that it is very efficient to solve the entire regularisation path by LARS:

“roughly the same computational cost as a single least square fit” ( Pg.438 by Murphy[Mur12]).

5.3 Experiments

5.3.1 Experiment Settings

Datasets We conduct two set of experiments. The first set of experiments are used to statisti-

cally validate the efficacy of our framework. We firstly design a statistical simulated experiment

to compare different methods of solving Eq (5.9). Then we further validate that our framework

can beat the other alternatives on different graphs sparsity, and outlier ratio. For this purpose, we

employ the FG-NET image age dataset [FGH10] which contains 1002 images of 82 individuals

labeled with age 0 to 69. The training set is composed of the images of 41 randomly selected

people and the rest as testing. All experiments are repeated through 10 rounds of training/testing

split to reduce variability. Each image is represented by a 55 dimension vector extracted by active

appearance models (AAM).

The second set of experiments are conducted on several relative attribute datasets: two image and

video interestingness datasets and two general image relative attribute datasets. These datasets

are summarised in Table 5.1. The image interestingness dataset consists of 2222 images, each
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Dataset No. pairs No. img/video Feat. Dim. No. cls

Image Age [FGH10] – 1002 55 –

Image Int.[IXTO11] 16000 2222 932(150) 1

Video Int. [JYF+13] 60000 420 1000(60) 14

PubFig [KBBN09, KPG12] 2616 772 557(100) 8

Scene [OT01, KPG12] 1378 2688 512(100) 8

Table 5.1: Dataset summary for relative attributes. We use the original features to learn the

ranking model in Eq (5.13) and reduce the feature dimension (values in brackets) using KPCA

to improve outlier detection in Eq (5.9) by enlarging the solution space.

represented as a 932 dimensional feature vector as in [GGR+13]. 16000 pairwise comparisons

were collected by [GGR+13] using AMT and are used as annotation.

The video interestingness dataset is the YouTube interestingness dataset introduced in [JYF+13],

which contains 14 different categories, each of which has 30 YouTube videos. 10 ∼ 15 annota-

tors were asked to give complete interesting comparisons for all the videos in each category. So

the original annotation is noisy but not sparse. We use a bag-of-words of Scale Invariant Feature

Transform (SIFT) and Mel-Frequency Cepstral Coefficient (MFCC) as the feature representation

which are shown to be effective in [JYF+13] for predicting video interestingness.

We also carry out experiments on two relative attributes datasets – PubFig [KBBN09] and

Scene [OT01] to test our URLR model’s ability to predict other more general relative visual at-

tributes. PubFig and Scene considered 11 (‘smiling’, ‘round face’, etc.) and 6 (‘openness’, ‘nat-

ural’ etc.) relative attributes respectively. Pairwise attribute annotation was collected by AMT

[KPG12]. Each pair was annotated by 5 crowdsourced workers. Gist and colour histograms fea-

tures are used for PubFig, and Gist alone for Scene. Each image also belongs to a class (celebrity

or scene type). These two datasets were designed for classification, with attribute scores as the

representation, so the classification accuracy is determined by the attribute prediction accuracy.

The detailed of all these dataset are in Chapter 2.1.6.

Evaluation metrics Since image age ranking experiments validate our framework from a sta-

tistical aspect, we use Kendall tau rank correlation to measure the statistical association between

predicted rankings and ground-truth rankings6. Higher Kendall tau correlation means higher

6Recent statistical theories [RA14, JLYY11] show that the dense human annotations collected in
[GGR+13] and [JYF+13] can give a reasonable approximation of ground truth for interestingness.
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correlations of two ranking orders. While for the image and video interestingness dataset, we

prefer to use the metric – Kendall tau rank distance7 to measure the rank correlation between the

predicted ranking order and the ground truth ranking of unseen test data provided by [GGR+13]

and [JYF+13] respectively. Higher Kendall tau rank distance means lower quality of the ranking

order predicted. The similarities and differences between rank distance and rank correlation are

discussed in [Car09]. We use both of them to evaluate different experiments in our settings. For

the scene and pubfig image dataset, the relative attributes are very sparsely collected and their

prediction performance can only be evaluated indirectly by image classification accuracy with

the predicted relative attributes as image representation.

Competitors We compare our method (URLR) with four competitors.

Jiang et al. [JYF+13] this method uses majority voting for outlier pruning and rankSVM

for learning to rank.

Gygli et al. [GGR+13] this method also first removes outliers by majority voting. After

that, the fraction of selections by the pairwise comparisons for each data point is used as

an absolute interestingness score and a regression model is then learned for prediction.

Huber-LASSO [XXHY13, FTS12] this is a statistical ranking method that performs out-

lier detection as described in Sec. 5.1.4, followed by estimating β by β̂ = Φ†θ̂ . (4)

Raw this is our URLR model without outlier detection, that is, all annotations are used to

estimate β .

5.3.2 Learning to Rank Image Age

We design this image age experiment to further validate the statistical significance of our URLR

framework over the alternatives on graph sparsity and outlier ratio.

5.3.2.1 Crowdsourcing errors.

We use the ground truth age to generate the pairwise comparisons without any error (used for

Real+RR). Errors are synthesized according to human error patterns estimated by data collected

7The Kendall tau ranking distance between two lists L1 and L2 is

K(τ1,τ2) =| {(i, j) : i < j,(τ1(i)< τ1( j)∧ τ2(i)> τ2( j))∨ (τ1(i)> τ1( j)∧ τ2(i)< τ2( j))} |

, where τ1(i) and τ2(i) are the rankings of the element i in L1 and L2.
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by an online pilot study [Fu]: 4000 pairwise image comparison from 20 skilled willingly partic-

ipating “good” workers are collected as unintentional errors. The human unintentional age error

pattern is built by fitting the error rate against true age difference between collected pairs. As

expected, humans are more error-prone for smaller age difference. We use this error pattern for

unintentional error generations. Intentional errors are introduced by ‘bad’ workers who insert a

random order. This is easily simulated by adding random comparisons. In practice, human errors

in crowdsourcing experiments can be a mixture of both types. Thus two settings are considered:

Unint.: errors are generated following the estimated human unintentional error model resulting

in around 10% errors. Unint.+Int.: random comparisons are added on top of Unint., giving an

error ratio of around 25%, unless otherwise stated. Note that these percentage of errors are only

used for the age experiments. Since the ground-truth of testing data is known to us, we can give

an upper bound for all the algorithms by using the ground-truth as the training data which is –

GT.

5.3.2.2 Quantitative results.

Four experiments are performed using different settings to show the effectiveness of our method

quantitatively.
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Figure 5.2: Comparing URLR and Huber-LASSO on ranking prediction under two error settings.

1. Effectiveness of our models. For 300 training images, 600 unique comparisons are sam-

pled. Fig. 5.2 shows that URLR and Huber-LASSO improve over Raw indicating that

outliers are effectively pruned. Both models are robust to low error rate (Fig. 5.2 Left:

10% in Unint.), whilst the performance of URLR is significant better than Huber-LASSO

in high error ratio (Fig. 5.2 Right: 25% in Unint.+Int.) because of using low-level feature
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Figure 5.3: Comparing URLR and Huber-LASSO against Jiang et al. [JYF+13].

representation to increase the dimension of model inconsistency subspace Γ and dim(Γ)

from 301 for Huber-LASSO to 546 for URLR. This result validates our analysis that higher

dim(Γ) leads to better chance of identify more accurate outliers.

2. Comparison with Jiang’s majority voting. Given the same data but each pair compared

by 5 workers under the Unint.+Int. error condition, Fig. 5.3 shows that Jiang beats Raw.

This shows that for relative dense graph, majority voting is still a good strategy of removing

some outliers and improves the prediction accuracy. However, URLR outperforms Jiang

et al. [JYF+13] after the pruning rate passes 10%. This demonstrates that aggregating all

paired comparisons globally for outlier pruning is more effective than aggregating them

locally for each edge as done by majority voting.

3. Effects of graph sparsity. For 300 training images, one comparison per edge is sampled

for 400−4000 edges under the Unint.+Int. error setting. Fig. 5.5 shows that the when the

graph becomes very sparse, the ability of Huber-LASSO to detect outliers diminishes be-

cause the dimension of the model inconsistency space, dim(Γ) decreases with the number

of edges |E|. In contrast, URLR’s performance decreases much more gracefully due to

the use of low-level features. Particularly, URLR remains very effective yielding an AUC

of 0.85 given 400 edges for 300 nodes with 25% error ratio– an extremely noisy sparse

graph, whilst Huber-LASSO gives an AUC value around half of that and a ranking predic-

tion performance identical to that of Raw. The gap between URLR and Raw suggests that

our model becomes more useful given more sparse graphs.

4. Effects of error ratio. We use the Unint.+Int. error model to vary the amount of ran-
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dom comparisons and simulate different amounts of errors in 10 sampled graphs from 300

training images and 2000 unique sampled pairs. The pruning rate is fixed at 25%. Fig.

5.4 shows that URLR remains effective even when error ratio reaches as high as 35%. This

shows that although a sparse outlier model is assumed, our model can deal with non-sparse

outliers.
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Figure 5.4: Effects of error ratio.
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Figure 5.5: Effects of graph sparsity.

5.3.2.3 Qualitive results.

1. What are pruned and in what Order? The regularisation path can be examined as

λ decreases to produce a ranked list for all pairwise comparisons according to outlier

probability. Figure 5.6 shows the relationship between the pruning order (i.e. which pair is

pruned first) and ground truth age difference, illustrated by examples. It is seen that overall

outliers with larger age difference tend to be pruned first. This means even with a conser-

vative pruning rate, obvious outliers (potentially causing more performance degradation in

learning) can be reliably pruned by our model.
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Figure 5.6: Relationship between the pruning order and actual age difference for RHRL+.
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Figure 5.7: Left: the crowdsourced pairwise labels with the number of votes. Colour indicates

different types of pairs. Right: the outlier probabilities of each pair via our model.

2. What went wrong for majority voting. To intuitively explain the advantage of our

model over majority voting, we carry out a small-scale experiment using five images

(A,B,C,D,E) with 17 comparisons by multiple workers (see Fig.5.7). The outlier D→C

(i.e. D is older than C) can be effectively dealt with by majority voting as more correctly

voting. However, the opposite happens for E → B and majority voting also fails flat for

the single noisy label of B→ A. These three cases naturally reflect the success, failure

and no-effect cases for majority voting in dealing with crowdsourcing noise. More subtly

but critically, in this example majority voting will induce Condorcet’s paradox in that we

have B→ C→ D→ E → B which means that the error in B→ E has propagated across

the graph without any global inconsistency check. In contrast, global inconsistency among

pairs is modeled via Hogerank decomposition in our method to identify outliers even if

they receive a majority vote. In particular, Fig. 5.7 shows that E → B has the the highest

outlier probability; it will thus be removed by our model to prevent the error propagation.
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Figure 5.8: Image interestingness prediction performance. Lower is better.

Sucess cases Failure cases

Figure 5.9: Qualitative results of interestingness prediction. The left images were annotated as

more interesting than the right ones. The success cases show the true positive outliers detected

by URLR. Two failure cases are shown in red boxes where inliers are incorrectly removed.

5.3.3 Image Interestingness Prediction

5.3.3.1 Experimental settings

For this experiment, we randomly select 1000 images for training and the remaining 1222 are

used for testing. All the experiments are repeated 10 times to reduce variance. The pruning rate

p is set to 20%. We also vary the number of annotated pairs used to test how well each compared

method copes with increasing annotation sparsity.

5.3.3.2 Comparative results

The results are shown in Fig. 5.8 (a). It shows clearly that our URLR significantly outperforms

the four alternatives for a wide range of annotation density. This validates the effectiveness of our

method. In particular, the improvement over Jiang et al. [JYF+13] and Gygli et al. [GGR+13]

demonstrates the superior outlier detection ability of URLR. URLR is superior to Huber-LASSO

because the joint outlier detection and ranking estimation framework of URLR enables the en-

largement of the solution space of Eq (5.9), resulting in better outlier detection performance. The
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performance of Gygli et al. [GGR+13] is the worst among all methods compared, particularly so

given sparser annotation. This is not surprising – in order to get an reliable absolute interesting-

ness value, dozens or even hundreds of comparisons per image are required, a condition not met

by this dataset. The estimated value becomes less reliable given sparser annotations, explaining

the worse relative performance. The performance of Huber-LASSO is also better than Jiang et al.

[JYF+13] and Gygli et al. suggesting even a weaker global outlier detection approach is better

then the majority voting based local one. Interestingly even the baseline method Raw gives a

comparable result to Jiang et al. [JYF+13] and Gygli et al. [GGR+13] which suggests that just

using all annotations without discrimination in a global cost function Eq (5.5) is as effective as

majority voting.

Fig. 5.8 (b) evaluates how the performances of URLR and Huber-LASSO are affected by

the pruning rate p. It can be seen that the performance of URLR is improving with an increas-

ing pruning rate. This means that our URLR can keep on detecting true positive outliers. The

gap between URLR and Huber-LASSO gets bigger when more comparisons are pruned show-

ing Huber-LASSO stops detecting outliers much earlier on. Some qualitative results of outlier

detection using URLR are shown in Fig. 5.9.

5.3.4 Video Interestingness prediction

5.3.4.1 Experimental settings

Because comparing videos across different categories is not very meaningful, we follow the same

settings as in [JYF+13] and only compare the interestingness of videos within the same category.

Specifically, we use 20 videos and their paired comparison for training and the remaining 10

videos for testing. The experiments are repeated for 10 rounds and the averaged results are

reported. We use rankSVM with χ2 kernel which is approximated by additive kernel of explicit

feature mapping [VZ11]. Kendall tau rank distance is used, and we find that the same results are

obtained if the prediction accuracy used in [JYF+13] is used instead. The pruning rate is again

set to 20%.

5.3.4.2 Comparative results

The results of video interestingness prediction are shown in Fig 5.10. Fig. 5.10(a) compares dif-

ferent methods given varying amounts of annotations, and Fig. 5.10(b) shows the per category

performance. The results show that all the observations we had for the image interestingness pre-
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Figure 5.10: Video interestingness prediction results.

diction experiment still hold here, and across all categories. However in general the gaps between

our URLR and the alternatives are smaller as this dataset is densely annotated. In particular the

performance of Huber-LASSO is much closer to our URLR now. This is because the advantage of

URLR over Huber-LASSO is stronger when |E| is close to I. Given a dense pairwise annotation

|E| is much greater than I and the effect of enlarging the solution space diminishes.

5.3.5 Relative Attributes Prediction for Image Classification
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Figure 5.11: Relative attribute performance evaluated indirectly as image classification rate

(chance = 0.125).

5.3.5.1 Experimental settings

We evaluate image classification with relative attributes as representation on the PubFig and

Scene datasets under two settings: multi-class classification where samples from all classes are



5.3. Experiments 117

available for training and zero-shot transfer learning where one class is held out during training (a

different class is used in each trial with the result averaged). Our experiment setting is similar to

that in [PG11b], except that image-level, rather than class-level pairwise comparisons are used.

Two variations of the setting are used:

• Orig: This is the original setting with the pairwise annotations used as they are.

• Orig+synth: By visual inspection, there are limited annotation outliers in these datasets,

perhaps because the relative attributes are less subjective compared to interestingness. To

simulate more challenging situations, we randomly add 150 random comparison for each

attribute, many of which would correspond to outliers. This will lead to around 20% extra

outliers.

The pruning rate is set to 7% for original dataset (Orig) and 27% for dataset with additional

outliers inserted for all attributes of both datasets (Orig+synth).

5.3.5.2 Comparative results

Without the ground truth of relative attribute values, different models are evaluated indirectly via

image classification accuracy in Fig. 5.11. Note that the method of Gygli et al. [GGR+13] is not

compared here as the annotation is too sparse for it to learn a meaningful model. The following

observations can be made:

1. Our URLR always outperforms Huber-LASSO, maj-voting (Jiang) and Raw for all exper-

iment settings. The improvement is more significant when the data contain more errors

(Orig+synth).

2. The performance of other methods is in general consistent to what we observed in the

image and video interestingness experiments: Huber-LASSO is better than majority voting

(Jiang et al. [JYF+13]) and Raw often gives better results than majority voting too.

3. It is noted that for PubFig, Jiang et al. [JYF+13] is better than Raw given more outliers, but

it is not the case for Scene. This is probably because the annotators are very familiar with

the celebrity faces in PubFig.. Consequently there should be more subjective/intentional

errors for Scene, causing majority voting to choose wrong local ranking orders (e.g. not

many people are sure how to compare the relative values of the ‘diagonal plane’ attribute

for two images). These majority voting + outlier cases can only be rectified by using a

global approach such as our URLR, even the Huber-LASSO method to a certain extent.
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Figure 5.12: Qualitative results on image relative attribute prediction.

5.3.5.3 Qualitative Results

Figure 5.12 gives some examples of the pruned pairs for both datasets using URLR. In the suc-

cess cases, the left images were (incorrectly) annotated to have more of the attribute than the

right ones. However, they are either wrong or too ambiguous to give consistent answers, and as

such are detrimental to learning to rank. A number of failure cases (false positive pairs identified

by URLR) are also shown. Some of them are caused by unique view point (e.g. Hugh Laurie’s

mouth is not visible, so it is hard to tell who smiles more; the building and the street scene are

too zoomed in compared to most other samples); others are caused by the weak feature repre-

sentation, e.g. in the ‘male’ attribute example, the colour and Gist features are not discriminative

enough for judging which of the two men has a more ‘male’ attribute.

5.4 Summary

We have proposed a novel unified robust learning to rank (URLR) framework for predicting

image and video interestingness. The key advantage of our method over the existing majority

voting based approaches is that we can detect outliers globally by minimising a global ranking

inconsistency cost. The joint outlier detection and ranking estimation formulation also provides

our model with an advantage over the conventional statistical ranking methods such as Huber-

LASSO for outlier detection. The effectiveness of our model in comparison with state-of-the-art

alternatives has been validated using image and video interestingness datasets. Further, it is

generally applicable to other relative attribute prediction tasks as demonstrated by our relative

attribute based image classification experiments.
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Chapter 6

Conclusions and Future Work

This thesis explored the problem of attribute learning for image and video understanding. In

particular, we

1. studied learning latent attributes for understanding complex image and video data with

very sparse, incomplete and ambiguous annotations of user-defined attributes in Chapter

3;

2. solved the projection domain shift, prototype sparsity and the inability to combine multiple

semantic representation problems by transductive multi-view embedding;

3. finally we investigated the robust learning of relative attributes from crowdsourced pair-

wise comparisons.

It is clear that the work in this thesis is unable to cover all the potential useful applications and

generalisation of attribute learning for image and video understanding. Other directions such as

attribute classifier from linguistic descriptions [ESE13, PG11a] and image retrieval by attribute

feedback [PP12, SFD11] are also promising directions for attribute learning. Nevertheless, we

believe that our three problems touch the challenging topics and are of significant contributions to

the fields of computer vision and machine learning in general. Also, we believe that the research

on attribute learning is just at the beginning and our efforts make the problem – attribute learning

for image/video understanding one step closer to the Holy Grail of life-long learning in visual

recognition for the computer vision and machine learning communities.
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6.1 Learning Latent Attributes

Learning multi-modal latent attributes is studied in Chapter 3. We introduce a semi-latent at-

tribute space, which enables the use of sparse, incomplete and ambiguous prior annotated knowl-

edge available from both user-defined and two types of automatically discovered latent attributes.

By formulating a computationally tractable solution via a novel and scalable topic model, we

show latent attributes computed by our framework can be utilised to tackle a wide variety of

learning tasks in the context of multimedia content understanding including multi-task, label-

noise, N-shot and surprisingly zero-shot learning.

Nevertheless, there remain a number of important open questions to be addressed. Thus

far, our attribute-learner has not yet considered inter-attribute correlation explicitly [QHR+07,

THW+09], though this limitation is shared by most other attribute learners with the exception

of [LKS11]. For our task, this can be addressed straightforwardly by generalizing the correlated

topic model (CTM) [BL07] instead of the conventional LDA [BNJ03], which should produce

commensurate gains in performance to those observed elsewhere [LKS11].

The complexity of our model in terms of the size of the attribute/topic-space was fixed to a

reasonable value throughout, and we focused on learning with attribute-constraints on the topics.

A more desirable solution would be a non-parametric framework which could infer the appropri-

ate dimension of the latent attribute-space automatically given available UD attributes.

6.2 Transductive Multi-view Embedding

Intrinsically the attribute learning framework belongs to the scope of learning to learn or life-

long learning [PY10, TM95, PL14] which studies how to intelligently apply previously learned

knowledge to perform well on future recognition tasks. It is thus possible to understanding our

transductive multi-view embedding framework from the perspective of machine learning.

For the zero-shot learning problem, this thesis in Chapter 4 has presented a transductive

multi-view embedding framework that not only rectifies the projection shift and prototype spar-

sity problems, but also exploits the complementary of multiple semantic representations of visual

data. Such a framework enables the TMV-HLP algorithms to greatly improve both zero-shot and

N-shot learning tasks as well as a number of novel cross-view annotation tasks. Extensive exper-

iments are carried out and the results show that our approach significantly outperforms existing

methods for both zero-shot and N-shot recognition on three image and video benchmark datasets.
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With regard to the projection domain shift and prototype sparsity problems, still a number of

problems have not been solved and remain as future work.

1. In this thesis multi-view Canonical Component Analysis (CCA) is employed for learning

the embedding space. Although it works well, other embedding framework can be con-

sidered (e.g. Wang et al. [WHW+13]). In particular, in the current pipeline of Chapter 4,

low-level features are firstly projected onto different semantic views before the views are

embedded. Since the projection itself can be considered as an embedding, it is possible to

develop a unified embedding framework to combine these two embedding steps together.

2. Although the presented framework is designed for lifelong learning [PL14] and under a

realistic lifelong learning setting [CSG13], an unlabelled data point could either belong to a

seen class (those in the auxiliary/source dataset) or an unseen class. The current framework

needs to be extended to firstly distinguish these two types of data before performing zero-

shot recognition.

3. Our results suggest that more views, either manually defined (attributes), extracted from

linguistic knowledge bases (word space), or learned directly from visual data (deep learn-

ing features), give rise to better embedding space. More investigations are needed to enable

more systematic design and selection of semantic views for embedding.

I should also be noted that our framework can explore the correlations of labels on a zero-shot

learning problem and solve the problem of multi-label zero-shot learning. As an extension of our

transductive multi-view embedding framework, we developed the multi-label zero-shot learn-

ing framework in [FYH+14b], and proposed two tailor-made multi-label algorithms – DMP and

TraMP. The experimental results on benchmark multi-label datasets show the efficacy of our

framework for multi-label zero shot learning over a variety of baselines. Besides the proposed

tailor-made multi-label algorithms – DMP and TraMP, our strategy in [FYH+14b] could poten-

tially help to generalise the existing multi-label algorithms to solve multi-label zero-shot learning

problems. Thus it would be extremely interesting to investigate these in the future.

6.3 Robust Learning of Relative Attributes

In this thesis, we propose a novel robust approach learning for relative attributes from noisy

and sparse pairwise comparison data. In particularly, our framework can tackle the problems
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of detecting outliers and estimating ranking scores jointly in our unified framework. In Chapter

5, we demonstrate both theoretically and experimentally that our method is superior to existing

majority voting based methods as well as statistical ranking based methods.

In Chapter 5, we discuss some connetions of our URLR framework with the Huber-Lasso.

We formulate the outlier detection on graphs as a standard LASSO problem, and solve it by regu-

larisation path. As future work, we need to study a better solution for such a LASSO formulation

and also investigate other penalty functions [SO11] for outlier detection beside LASSO. For ex-

ample She et al. [SO11] proposed a non-convex hard-threshold penalty function which has been

shown better ability for outlier detection than that of the L1−penalty in LASSO formulation.
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