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1 Linear Regression
Let (xi, yi)

n
i=1 be our dataset, with xi ∈ Rp and yi ∈ Rp. Linear regression can

be formulated as empirical risk minimization, where the model is to predict y
as xTβ and we use the squared loss:

Remp (β) =

n∑
i=1

1

2

(
yi − xTi β

)2
1. Previously, we know that optimal parameter is

β̂ =
(
XTX

)−1
XTY (1)

where X is a n× p matrix with ith row given xTi , and Y is a n× 1 matrix
with ith entry yi. To warm up, please remind me how to derive the result
of Eq (1).

2. Consider regularizing our empirical risk by incorporating a L2 regularizer.
That is, find β minimizing

C

2
‖ β ‖22 +

n∑
i=1

1

2

(
yi − xTi β

)2
We know that the optimal parameter is given by the ridge regression
estimator,

β̂ =
(
CI +XTX

)−1
XTY (2)

Really? How? Anyone who can help prove Eq (2) would be great.

3. Question: Suppose we wish to introduce nonlinearities into the model, by
transforming x → φ (x). Show how this transformation may be achieved
using the kernel trick. That is, let Φ be a matrix with ith row given
by φ (xi)

T . The optimal parameters β̂ would then be given by (previous
part):
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β̂ =
(
CI + ΦT Φ

)−1
ΦTY

Express the predicted y values on the training set, Φβ̂, only in terms of
Y and the Gram matrix G = ΦΦT , with Gij = φ (xi)

T
φ (xi) = κ (xi, xj)

where κ is some kernel function.

Compute an expression for the value of y0 predicted by the model at a
test vector x0.

You will find the Woodbury matrix inversion formula useful:

(A+ UBV )
−1

= A−1 −A−1U
(
B−1 + V A−1U

)−1
V A−1

where A and B are square invertible matrices of size n × n and p × p
respectively, and U and V are n× p and p× n rectangular matrices.

2 SVM –Fitting an SVM classifier by hand
Consider a dataset with 2 points in 1d:(x1 = 0, y1 = −1) and

(
x2 =

√
2, y2 = 1

)
.

Consider mapping each point to 3d using the feature vector φ (x) =
[
1,
√

2x, x2
]T

. (This is equivalent to using a second order polynomial kernel.) The max mar-
gin classifier has the form

min ‖ w ‖2 s.t.

y1
(
wTφ (x1) + w0

)
> 1 (3)

y1
(
wTφ (x1) + w0

)
> 1 (4)

1. Write down a vector that is parallel to the optimal vector w. Hint: Please
remember that w is perpendicular to the decision boundary between the
two points in the 3d feature space.

2. What is the value of the margin that is achieved by this w? Hint: recall
that the margin is the distance from each support vector to the decision
boundary. Hint: think about the geometry of 2 points in space, with a
line separating one from the other.

3. Solve for w, using the fact the margin is equal to 1/||w||.

4. Solve for w0 using your value for w in Eq (3) and Eq (4) . Hint: the points
will be on the decision boundary, so the inequalities will be tight.

5. Write down the form of the discriminant function f (x) = w0 + wTφ (x)
as an explicit function of x.
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3 Neural Network
Recall the definition of a 1 hidden layer neural network for binary classification.
The objective function is:

J = −
n∑

i=1

yilogŷi + (1− yi) log (1− ŷi) +
1

2

p∑
j=1

m∑
k=1

C |Wh
jk |2 +

1

2

m∑
k=1

C |W o
k |2

and the network definition is

ŷi = s

(
bo +

m∑
k=1

W o
khik

)

hik = s

bhk +

p∑
j=1

Wh
jkxij


1. Verify that the derivatives needed for gradient descent are:

dJ

dW o
k

= CW o
k +

n∑
i=1

(ŷi − yi)hik

dJ

dWh
jk

= CWh
jk +

n∑
i=1

(ŷi − yi)W o
khik (1− hik)xij

2. Suppose instead that you have an L layer neural network for binary clas-
sification, with each hidden layer having m neurons with logistic nonlin-
earity. Define carefully the network, giving the parameterization of each
layer, and derive the backpropagation algorithm to compute the deriva-
tives of the objective with respect to the parameters. You may ignore bias
terms for simplicity. (Hint: we may want to refer to Chap7 of our slides,
or Chap 5.3 (Error Backpropagation) of the book “Pattern Recognition
and Machine Learning” for the backpropagation).
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