Introduction to Statistical Learning and Machine Learning

Fudan-SDS Confidential - Do Not Distribute

Chap 8 Computational Learning Theory&Mid-term Review (1)

Computational Learning Theory

Fudan-SDS Confidential - Do Not Distribute

Chap 8

Generalisation of finite hypothesis spaces; VC-dimension Margin based generalisation

We gave several machine learning algorithms:

- Perceptron
- Linear Support vector Machine
- SVM with kernels, e.g. polynomial or Gaussian

How do we guarantee that the learned classifier will perform well on test data? How much training data do we need?

Example: Perceptron applied to spam classification Optional subtitle

- there was a big gap between 0.055training error and test error!
- This is the difficulty of one-shot learning.

With few data points,

数据学院

How much training data do you need?

In general, not the one-shot learning case

- Depends on what Hypothesis class the learning algorithm considers
- • For example, consider an Instance-based Learning algorithm
 - Input: training data $S = \{(x_i, y_i)\}$
 - Output: function f(x) which, if there exists (x_i, y_i) in S such that $x = x_i$, predicts y_i , and otherwise predicts the majority label,
 - this learning algorithm will always obtain zero training error
 - But, it will take a huge amount of training data to obtain small test error (i.e. its generalisation performance is horrible).
- Linear classifiers are powerful precisely because of its simplicity
 - Generalisation is easy to guarantee

大数据学院

Choosing among several classifiers A fictional example

- if image contains a face, -1, otherwise)
- Lots of teams compete ...
- Alibaba get back 20,000 recognition algorithm
- They evaluate all 20,000 algorithm on *m* labelled images which is not previously shown to the competitors) and chooses a winner.
- The winner obtains 98% accuracy on *m* labelled images!
- Alibaba has a face recognition algorithm that is known to be 95% accurate, • Should they deploy the winner's algorithm instead?

 - Can't risk doing worse ... would be a disaster for Alibaba.

Suppose Alibaba holds a competition for the best face recognition classifier (+1)

据学院

A simple setting...

Optional subtitle

- Classification
 - *m* data points
 - Finite number of possible hypothesis (e.g. 20000 face recognition classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h)=0$
 - i.e. assume for now that the winner gets 100% accuracy on the *m* labelled images (we'll handle 98% case afterward)
- What is the probability that h has more than ε true error?
 - $error_{true}(h) > \varepsilon$

A simple setting — Finite number of possible hypothesis

- Empirical Risk Minimisation(ERM)
 - training set S from an unknown distribution \mathcal{D} ; labeled by target function f; Output: $h_s: X \longrightarrow Y$;
 - Empirical error/empirical risk/training error: errors of classifier incurs over the training sample.
 - ERM may go wrong - Overfitting.
- Empirical Risk Minimisation with Inductive Bias
 - A common solution is to apply the ERM learning rule over a restricted search space.
 - the learner should choose in advance (before seeing the data) a set of predictors. This set is called a hypothesis class and is denoted by \mathcal{H} . Each h in \mathcal{H} function mapping from X to Y. For a given class \mathcal{H} , and a training sample S, the ERM_H learner uses the ERM rule to choose a predictor h with the lowest possible error over S.
 - Such restrictions are often called an inductive bias. •

(通常的解决方案是在一个受限的搜索空间使用ERM学些规则)

Some Concepts

Optional subtitle

- Empirical Risk Minimisation (ERM) 经验风险最小化
 - 可行解是合理的。
- 表示非常糟糕。
 - 人产生怀疑的。

• 对于Learner 而言,训练样本是真实世界的一个缩影,因此利用训练集来寻找一个对于数据的

• Overfitting: 一个预测器在训练集上的效果非常优秀, 但是在真实世界中的

• 正如日常生活中, 一个人如果能对自己的每个行为都做出完美的解释, 那么这个人是容易令

Chap8 Recap – probability

Fudan-SDS Confidential - Do Not Distribute

Introduction to probability: outcomes

An outcome space specifies the possible outcomes that we would like to reason about, e.g.

We specify a **probability** p(**x**) for each outcome **x** such that •

 $p(x) \ge 0, \qquad \sum p(x) = 1$ $x \in \Omega$

Introduction to probability: events Optional subtitle

An event is a subset of the outcome space, e.g.

 The probability of an event is given by the sum of the probabilities of the outcomes it contains,

$$p(E) = \sum_{x \in E} p(x) \qquad \text{E.g., } p(E) = p(\bigcirc) + p(\bigcirc) + p(\bigcirc)$$

= 1/2, if fair die

Introduction to probability: union bounds Optional subtitle • P(A or B or C or D or ...) $\leq P(A) + P(B) + P(C) + P(D) + ...$

Q: When is this a tight bound? A: For disjoint events (i.e., non-overlapping circles)

Fudan-SDS Confidential - Do Not Distribute

$p(A \cup B) = p(A) + p(B) - p(A \cap B)$ $\leq p(A) + p(B)$

Introduction to probability: independence

Optional subtitle

Two events A and B are independent if ٠ $p(A \cap B) = p(A)p(B)$

Suppose our outcome space had two different die: ٠

and each die is (defined to be) independent, i.e.

p() = p() p()

Are these events independent? **No!** $p(A \cap B) = 0$ $p(A)p(B) = \left(\frac{1}{6}\right)^2$

Introduction to probability: independence

Optional subtitle

Two events A and B are independent if ٠ $p(A \cap B) = p(A)p(B)$

Introduction to probability

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

U = outcome space A,B events

Independence

 $P(A \cap B) = P(A)P(B)$

[Figures from http://ibscrewed4maths.blogspot.com/]

Introduction to probability

Optional subtitle

Notation: Val(X) = set D of all values assumed by variable X

p(X) specifies a distribution: $p(X = x) \ge x$ $\sum p(X = x) = 1$ $x \in Val(X)$

X=x is simply an event, so can apply union bound, conditioning, etc.

Two random variables X and Y are **independent** if: p(X = x, Y = y) = p(X = x)p(Y

The **expectation** of **X** is defined as:
$$E[X] = \sum_{x \in Val(X)} p(X = x)x$$

For example, $E[Z_i^h] = \sum_{z \in \{0,1\}} p(Z_i^h = z)z = p(Z_i^h = 1)$

$$0 \quad \forall x \in \operatorname{Val}(X)$$

$$= y) \quad \forall x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y)$$

Chap 8 PAC bound

Fudan-SDS Confidential - Do Not Distribute

A simple setting...

Optional subtitle

- Classification
 - *m* data points
 - Finite number of possible hypothesis (e.g. 20000 face recognition classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: error_{train}(h)=0
 - i.e. assume for now that the winner gets 100% accuracy on the *m* labelled images (we'll handle 98% case afterward)
- What is the probability that h has more than ε true error?
 - $error_{true}(h) > \varepsilon$

How likely is a bad hypothesis to get m data points right? Hypothesis *h* that is **consistent** with training data

- - got *m* i.i.d. points right
 - h "bad" if it gets all this data right, but has high true error — What is the probability of this happening?
- Probability that h with error_{true}(h) $\geq \varepsilon$ classifies a randomly drawn data point correctly:

1. Pr(h gets data point wrong | error_{true}(h) = ε) = ε

2. Pr(h gets data point wrong | error_{true}(h) $\geq \varepsilon$) $\geq \varepsilon$

Probability that h with error_{true}(h) $\geq \varepsilon$ gets m iid data points correct: Pr(h gets m *iid* data points right | error_{true}(h) $\ge \varepsilon$) $\le (1-\varepsilon)^m \le e^{-\varepsilon m}$

- 3. Pr(h gets data point *right* | error_{true}(h) $\geq \varepsilon$) = 1 Pr(h gets data point *wrong* | error_{true}(h) $\geq \varepsilon$) ≤ 1- ε

Are we done?

Optional subtitle

Pr(h gets m *iid* data points right | error_{true}(h) $\geq \varepsilon$) $\leq e^{-\varepsilon m}$

- Says "if h gets m data points correct, then with very high probability (i.e. $1-e^{-\epsilon m}$) it is close to perfect (i.e., will have error $\leq \varepsilon$)
- This only considers one hypothesis!
- Suppose 1 billion people entered the competition, and each person submits a random function
- For **m** small enough, one of the functions will classify all points correctly – but all have very large true error

How likely is learner to pick a bad hypothesis? Optional subtitle

- Suppose there are |H_c| hypotheses consistent with the training data
 - How likely is learner to pick a bad one, i.e. with true error $\geq \varepsilon$?
 - We need to a bound that holds for all of them!

 $P(error_{true}(h_1) \ge \varepsilon OR error_{true}(h_2) \ge \varepsilon OR ... OR error_{true}(h_{|H_c|}) \ge \varepsilon)$ $\leq \sum_{k} P(error_{true}(h_{k}) \geq \varepsilon) \qquad \leftarrow Union bound$ $\leq \sum_{k} (1-\varepsilon)^{m}$ $\leq |\mathbf{H}|(1-\varepsilon)^{\mathsf{m}}$ \leq |H| e^{-mε}

Pr(h gets m *iid* data points right | error_{true}(h) $\geq \varepsilon$) $\leq e^{-\varepsilon m}$

- - bound on individual h_is
 individual h_is
 - $\leftarrow |\mathsf{H}_{c}| \leq |\mathsf{H}|$
 - \leftarrow (1- ε) $\leq e^{-\varepsilon}$ for $0 \leq \varepsilon \leq 1$

Generalisation error of finite hypothesis spaces [Haussler '88]

Optional subtitle

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D with *m* i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

 $P(\operatorname{error}_{true}(h) > \epsilon) \leq$

$$\leq |H|e^{-m\epsilon}$$

Argument: Since for all h we know that

Limitations of Haussler '88 bound

Optional subtitle

- There may be no consistent hypothesis h (where error_{train}(h)=0) ٠
- Size of hypothesis space •
 - What if |H| is really big?
 - What if it is continuous?
- First Goal: Can we get a bound for a learner with *error_{train}(h)* in training set?

Question: what's the expected error of a hypothesis?

- The probability of a hypothesis incorrectly classifying: $\sum \hat{p}(\vec{x}, y) \mathbb{1}[h(\vec{x}) \neq y]$ ٠
- We showed that the Z_i^h random variables are **independent** and **identically** ٠ distributed (i.i.d.) with $Pr(Z_i^h = 0) = \sum \hat{p}(\vec{x}, y) \mathbb{1}[h(\vec{x}) \neq y]$
- Estimating the true error probability is like estimating the parameter of a coin!
- **Chernoff bound**: for *m* i.i.d. coin flips, ٠

 (\vec{x},y)

 (\bar{x},y)

A
$$X_1, \dots, X_m$$
, where $X_i \in \{0, 1\}$. For $0 < \varepsilon < 1$:
 $p(X_i = 1) = \theta$
 $E[\frac{1}{m}\sum_{i=1}^m X_i] = \frac{1}{m}\sum_{i=1}^m E[X_i] = \theta$
ed (by linearity of expectation)

大数据学院

Generalisation bound for |H| hypothesis Optional subtitle

Theorem: Hypothesis space H finite, dataset D with *m* i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

 $P(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$

Why? Same reasoning as before. Use the Union bound over individual Chernoff bounds

Optional subtitle

PAC bound and Bias-Variance tradeoff

$$P(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around, with probability at least 1- δ : $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best h!!!

©2005-2007 Carlos Guestrin

据学院

PAC bound and Bias-Variance tradeoff Optional subtitle

for all h, with probability at least 1- δ :

 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) +$

"bias"

- For large |H|
 - low bias (assuming we can find a good h)
 - high variance (because bound is looser)
- For small |H|
 - high bias (is there a good h?)
 - low variance (tighter bound)

PAC bound: How much data? Optional subtitle

$P(\operatorname{error}_{true}(h) - \operatorname{error}_{trai})$

$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}$

• Given δ_{ϵ} how big should m be?

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$

$$_{in}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$$

 $_n(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$

Returning to our example...

A fictional example

if image contains a face, -1, otherwise)

Lots of teams compete ...

Alibaba get back 20,000 recognition algorithm

They evaluate all 20,000 algorithm on m labelled images which is not previously shown to the competitors) and chooses a winner.

The winner obtains 98% accuracy on m labelled images!

- Alibaba has a face recognition algorithm that is known to be 95% accurate, Should they deploy the winner's algorithm instead?
 - Can't risk doing worse ... would be a disaster for Alibaba.

Suppose Alibaba holds a competition for the best face recognition classifier (+1)

据学院

Returning to our example... Optional subtitle

 $\operatorname{error}_{true}(Alibaba) = .05$

 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h)$ =.02 error on the m images

Suppose $\delta = 0.01$ and m=100:

Suppose $\delta = 0.01$ and m=10,000:

So, with only ~100 test images, confidence interval too large! Do not deploy!

But, if the competitor's error is still .02 on m>10,000 images, then we can say that it is truly better with probability at least 99/100

$$|H|=20,000 \text{ competitors}$$

$$+ \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$$

$$m = 100 \text{ images}$$

$$.02 + \sqrt{\frac{\ln(20,000) + \ln(100)}{200}} \approx .29$$
$$.02 + \sqrt{\frac{\ln(20,000) + \ln(100)}{20,000}} \approx .047$$

Appendix VC dimension

Fudan-SDS Confidential - Do Not Distribute

What about continuous hypothesis spaces? Optional subtitle

- $\operatorname{error}_{true}(h) \leq \operatorname{error}_{true}(h)$
- Continuous hypothesis space: $-|H| = \infty$ – Infinite variance???

points that can be classified exactly!

$$r_{ain}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$$

Only care about the maximum number of

How many points can a linear boundary classify exactly? (1-D) Optional subtitle

2 Points: Yes!!

etc (8 total)

Shattering and Vapnik-Chervonenkis Dimension Optional subtitle

- A set of points is shattered by a hypothesis space H iff:
 - For all ways of *splitting* the examples into positive and negative subsets
 - There exists some consistent hypothesis h
- The VC Dimension of H over input space X
 - The size of the *largest* finite subset of X shattered by H

How many points can a linear boundary classify exactly? (3-D)

ᠿ

Optional subtitle

3 Points: Yes!!

4 Points: No...

[Figure from Chris Burges]

How many points can a linear boundary classify exactly? (d-D)

Optional subtitle

- of possible labels to d+1 points
 - But not d+2!!

 - Bias term w₀ required
 - Rule of Thumb: number of parameters in model often matches max number of points
- the number of points that can be completely labeled?

• A linear classifier $w_0 + \sum_{j=1..d} w_j x_j$ can represent all assignments

Thus, VC-dimension of d-dimensional linear classifiers is d+1

Question: Can we get a bound for error in as a function of

PAC bound using VC dimension Optional subtitle

- VC dimension: number of training points that can be classified exactly (shattered) by hypothesis space H!!!
 - Measures relevant size of hypothesis space

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- Same bias / variance tradeoff as always Now, just a function of VC(H)
- Note: all of this theory is for binary classification Can be generalized to multi-class and also regression

5 学院

Example of VC dimension Optional subtitle

 $error_t$

- Linear classifiers: VC(H) = d+1, for d features plus constant term b
- SVM with Gaussian Kernel - VC(H) = ∞

$$_{rue}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)}+1\right) + \ln\frac{4}{\delta}}{m}}$$

[Figure from Chris Burges]

大数据学院

What you need to know Optional subtitle

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case number of hypotheses considered
 - Infinite case VC dimension
- Bias-Variance tradeoff in learning theory

