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Ӥጱଫአڦ᧍ᶪᦩࣁ

ᶪᔰҁPhoneme҂ᦩڦ
2009ଙ҅Deep belief networks for phone recognitionӞ෈Ӿ҅Ⴎଶ਍ԟጱᲙ᧏ሲғ23.0% 

Өԏྲ᫾҅ӧݶGMMොဩፘଫᲙ᧏ሲғ
• Maximum Likelihood Training (MLT)ғ25.6%, 
• Sequence-Discriminative Training (SDT)ғ 21.7%

ڦ᦯ҁWord҂ᦩܔ
2011ଙ҅ Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech 
RecognitionӞ෈Ӿ҅Ⴎଶ਍ԟጱᲙ᧏ሲғ30.4% 

Өԏྲ᫾҅ӧݶGMMොဩፘଫᲙ᧏ሲғ
• Maximum Likelihood Training (MLT)ғ39.6%, 
• Sequence-Discriminative Training (SDT)ғ 36.2%



Ӥጱଫአڦ᧍ᶪᦩࣁ

੒ᦾᦩڦ
2011ଙचԭႮଶ਍ԟݐ஑ԧ܈ଙ๶ጱ᯿य़ᑱᏈ

2014ଙጯଶവڊचԭRNNጱDeepSpeech
ᙧว࢑ᶪኞ౮10ӡੜ෸ᕆහഝݶӧےݖ7380ੜ෸᧍ᶪӤࣁ



Ӥጱଫአڦᦩ؟ࢶࣁ

                            य़ᥢཛྷᥤᥧᦩڦ೴౴ᩦҁILSVRC 2014҂
ᇔ֛ᦩڦᶱፓ҅15Mࢶᇆ҅22Kᔄ

ᑍݷ ෸ᳵ Top-5 Error
AlexNet 2012ଙ 15.3%
OverFeatҁNew York University҂ 2013ଙ 13.8%
VGG NetҁOxford҂ 2014ଙ 7.3%
GoogLeNetҁGoogle҂ 2014ଙ 6.6%
Ոᔄ / 5.1%
Microsoft 2015ଙ2์6෭ 4.94%
Google 2015ଙ2์11෭ 4.82%
Microsoft 2015ଙ12์10෭ 3.57%
Google 2015ଙ12์11෭ 3.58%
Google 2016ଙ2์23෭ 3.08%



Ӥጱଫአڦᦩ؟ࢶࣁ

Ո᚜ᦩڦ
LFWҁ5749ӻՈ҅13233ୟՈ᚜ᆙᇆ҂

ᑍݷ ෸ᳵ Top-1 Accuracy
փᕹොဩ / ~96%
DeepFaceҁFacebook҂ 2014ଙ 97.35%
Ոᔄ / 97.53%
GaussianFaceҁḕ჈Ӿ෈य़਍҂ 2014ଙ 98.52%
DeepID3ҁḕ჈Ӿ෈य़਍҂ 2015ଙ2์ 99.53%
FacenetҁGoogle҂ 2015ଙ6์ 99.63%
ᚸᦔսࢶ 2015ଙ10์ 99.65%
ጯଶIDL 2015ଙ10์ 99.77%

Youtube Face DBҁ8MӻՈ҅200MୟՈ᚜ᆙᇆ҂
FaceNetҁGoogle҂ᦩڦሲݢᬡ95.12%ҁ2015ଙ҂



Ӥጱଫአڦᦩ؟ࢶࣁ

ଶҁAttention҂ဳى
Yoshua Bengioࢫᴚ҅2016ଙ



Ӥጱଫአڦᦩ؟ࢶࣁ

ၹᰁ؟ࢶጱړᔄ̵ᦩڦ
ೌᒈႣ



Ӥጱଫአڦᦩ؟ࢶࣁ

ൈᬿ؟ࢶ
Junhua MaoᒵՈ҅2016



Ӥጱଫአڦᦩ؟ࢶࣁ

Ոᗭᦇහ
Cong ZhangᒵՈ҅2016



ቘӤጱଫአ॒؟ࢶࣁ

ᕲኮᷚ໒ݒഘ
Leon A. GatysᒵՈ҅2015



ቘӤጱଫአ॒؟ࢶࣁ

ᬙሲړ᩻
2014ଙXiaoou TangᒵՈጱૡ֢
࢑ྲṛ̵᭛ଶளמ



ᛔᆐ᧍᥺ቘᥴӤጱଫአࣁ

Word2Vecጱᭇ෸ڊሿ
᦯᧍឴஑ԧๅᑜੂጱݻᰁᤒᐏ
᦯᧍ጱፘى௔ๅ਻ฃᦇᓒҁ֟ୡ᪗ᐶ҂
Ⴎଶ਍ԟٍ॓ԧ᯿ᥝጱᬌف

ᬌفғᦇᓒ๢

ᛔۖ۸ 0.674172

ଫአ 0.614087

ᛔۖ۸ᔮ 0.611133

๭ාᑀ਍ 0.607891

ᵞ౮ኪ᪠ 0.600370

ದ๞ 0.597519

ኪৼ਍ 0.591316

ୌཛྷ 0.577239

ૡᑕ਍ 0.572856

ஙኪৼ 0.570087



ᛔᆐ᧍᥺ቘᥴӤጱଫአࣁ

ਧ۸ګጱNLPଫአ
ਖ਼ᬦ݄ᕹᦇ๢࢏ᘉᦲጱ౮ᆧ౮ຎᬢᑏکᐟᕪᗑᕶཛྷࣳӤ 
चԭႮଶ਍ԟጱఘఽړຉ 
ᔮىአᐟᕪᗑᕶཛྷࣳ༄ၥੜ᧔ӾጱՈᇔڥ

य़ᥢཛྷᎣᦩࢶᨏጱ຅ୌӨଫአ
ᴅ᧛ቘᥴ̵๢࢏ᘉᦲ̵෈໩൹ᥝ
ෛ༷ஷ̵ෛᎣᦩጱᛔۖ਍ԟ
चԭᎣᦩࢶᨏਫሿฬᚆവቘ

՗෈๜ቘᥴک෈๜ኞ౮
ෛ᳼̵ӫ̵ڥጯᑀ᦯๵̵ᦞ෈ጱኞ౮
ฬᚆՈ๢੒ᦾᔮᕹ



ᛔᆐ᧍᥺ቘᥴӤጱଫአࣁ

LSTMຝ຅ጱᦊᎣᥴ᯽
Ոᴅ᧛޾๢࢏ᴅ᧛෸ጱᐟᕪزၚۖฎݢވզፘ԰ᶼၥҘ 
LSTMຝ຅ࣁᦊᎣ᥯ଶฎݳވቘҘ



༇Ӥጱଫአࢱࣁ

AlphaGo
ፓࣁڹGoRatingӤ૪ᕪ᩻᩼ິ၄̵๫ӮᎪᒵՈഭݷӮኴᒫӞ̶
ᨳՈᔄฎ஠ᆐጱڋӾ҅ҁ୧҂ՈૡฬᚆۓกᏟጱձڞፓຽᏟਧ̵ᥢࣁ



፜ኪӤጱଫአ……ࣁ

Google DeepMind
አԭ඙ഴᦇᓒ๢๐޾࢏ۓፘىᦡ॓ҁֺইܩٯᔮᕹ҂๶ᓕቘ᮱ړහഝӾஞ҅՗ᘒٺ੝15%ᚆᘙ

2014ଙ௛ᚆᘙ
኎෸ص4,402,836 366,903ӻᗦࢵਹꁿx1ଙ ࠟአኪհ

25ᗦزᛗ40ᗦص/ز኎෸

௛ᦇᜓݢ፜16,500,000-26,500,000ᗦز/ଙ



፜ኪӤጱଫአ……ࣁ

Google DeepMind
አԭ඙ഴᦇᓒ๢๐޾࢏ۓፘىᦡ॓ҁֺইܩٯᔮᕹ҂๶ᓕቘ᮱ړහഝӾஞ҅՗ᘒٺ੝15%ᚆᘙ



٠Ԫᶾऒጱଫአࣁ

ᗦ٠ࢵො෱૪୏઀ፘىᎸᑪӨଫአ
2009ଙDARPA૪፳ಋඐٟىԭႮଶ਍ԟጱಸ2010҅ޞଙ᩸୏তᩒۗፘىᶱፓ

2015ଙᩒۗTRACEᶱፓҁTarget Recognition and 
Adaption in Contested Environments ҂҅੒؟ࢶӾጱ
ፓຽᬰᤈᦩڦ

2012ଙᩒۗDEFTᶱፓҁDeep Exploration and 
Filtering of Text҂҅੒ၹᰁ෈๜හഝᬰᤈړຉ



ዌᶾऒጱଫአ܅ࣁ

ग़ᐿړຉದ๞૪ᕪࣁDNAړຉ̵ጣዩᶼၥᒵොᶎԾኞ୽ߥ
Harvardय़਍ጱBassetݢᶼၥܔ໐
᝗ᯢग़ா௔੒ວᜋᨶݢളᬪ௔ጱ୽
ߥ

Princetonय़਍ጱDeepSEAݢᶼ
ၥ᯿ᥝ᧣ഴ֖ᅩ੒ܔ໐᝗ᯢݒ
୑ጱ୽ߥ

Torontoय़਍ጱDeepBind ᚆݎሿ
RNAӨDNAӤጱᢓጮᕮ֖ݳᅩ҅
ᶼၥᑱݒጱ୽ߥ



᭜ᶾऒጱଫአګฬᚆࣁ

Googleګࣁ᭜ᶾऒጱૡ֢ҁ2016ଙ҂
᯿ᰁ̵୑୵ᒵग़໏۸ᇔկݶਫሿ੒๚ᥠᬦጱ᫫Ꮭ๭ᨶ̵᭐ก̵ӧݢԅᦒᕞ֢҅ݐ๢༁ᛍ҅80ӡེಬݣ14
ጱᔜٵಬݐ



Ⴎଶ਍ԟݸᖅݎ઀ݢᚆ

ੴ᮱๋ս
ༀଶୠවᳯ᷌
ੴ᮱ຄ꧊ᳯ᷌

ᦇᓒ॔๥ଶ
࿞ᬱਂ॔ࣁ๥ଶጱᳯ᷌

Ոᚏ๢ቘཛྷ೙
ฎވՈᚏጱ๢ګฎ๋ݳᭇጱҘ

Ոૡᦡᦇጱݢᚆ௔
఺ԎҘํވՈૡฎفত۸෸୚ڡࣁ

դհڍහጱᦡᦇս۸
᯿຅᧏૧ጱᘍᡤ̵୚فధᗖᶱ

ෆӻᗑᕶጱᦡᦇս۸
DeconvNet҅DeepPose……



Ⴎଶ਍ԟݸᖅݎ઀ݢᚆ

හഝᵞ
ๅग़ᐿᔄ̵ๅय़ᥢཛྷጱහഝᵞݢᚆڊሿ҅ইFeifei LiፓࣁڹവۖጱᥤᥧचࢩᕟҁVisual Genome҂
• 108,249ୟ؟ࢶ
• 4.2Mӻ܄ऒൈᬿ
• 1.7Mӻᥤᥧᳯ᷌ᳯᒼᒼໜ
• 2.1Mӻਫ֛༷ஷ
• 1.8Mӻં௔ൈᬿ
• 1.8Mӻىᔮൈᬿ

One-Shot Learning
Ⴎଶ਍ԟڥአᵱᥝۗ׵य़ᰁᦒᕞහഝ಍ᚆਫሿٌ୩य़শێ
ՈᔄܩᚆՐ᭗ᬦํᴴ໏ֺ੪ᚆ਍ԟکෛጱ༷ஷ޾ᔄڦ



Ⴎଶ਍ԟݸᖅݎ઀ݢᚆ

૲ୗ໛ຝ᫫կړ
௔ᚆݳCPU+GPUጱႰഀݎ

೰եᵞӨᦇᓒᜮᇆ
ᰒ੒Ⴎଶ਍ԟս۸ጱෛຝ຅

ӫአ॒ቘᜮᇆ
զFPGAԅԆጱᥴ٬ොໜ

੆ྎᕉ॒ቘᜮᇆ

֛ᔮᕮ຅ᶮᕆտᦓISCA 2016Ӿ
• 9ᓤӨႮଶ਍ԟፘىҁ57وᓤ҂
• 1ᓤԅᦧ๋ړṛᦞ෈

ᴳ֗౮๜̵ᴳ֗ۑᘙ

ๅग़ᔄࣳጱෛ॒ቘᜮᇆҘ
Tensor Processing UnitҁTPU҂Ҙ



ฬᚆጱӣᐿᔄࣳ

ఽᎣฬᚆ
੒ᥤᥧ̵ލᥧ̵᥶ᥧᒵఽᎣ
ᚆێጱཛྷ೙

ᦊᎣฬᚆ
੒വቘ̵ᥢ٬̵ښᒽ̵਍ԟ
ᒵᦊᎣᚆێጱཛྷ೙

᭜௔ฬᚆڠ
੒ᅎఽ̵ᶷఉᒵᚆێጱཛྷ೙
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(Goodfellow 2017)

Back-Propagation
• Back-propagation is “just the chain rule” of calculus

• But it’s a particular implementation of the chain rule

• Uses dynamic programming (table filling)

• Avoids recomputing repeated subexpressions

• Speed vs memory tradeoff

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

the chain rule states that
dz

dx
=

dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x 2 Rm, y 2 Rn,
g maps from Rm to Rn, and f maps from Rn to R. If y = g(x) and z = f(y), then

@z

@xi

=
X

j

@z

@yj

@yj

@xi

. (6.45)

In vector notation, this may be equivalently written as

rxz =

✓
@y

@x

◆>
ryz, (6.46)

where @y

@x
is the n ⇥ m Jacobian matrix of g.

From this we see that the gradient of a variable x can be obtained by multiplying
a Jacobian matrix @y

@x
by a gradient ryz. The back-propagation algorithm consists

of performing such a Jacobian-gradient product for each operation in the graph.
Usually we apply the back-propagation algorithm to tensors of arbitrary di-

mensionality, not merely to vectors. Conceptually, this is exactly the same as
back-propagation with vectors. The only difference is how the numbers are ar-
ranged in a grid to form a tensor. We could imagine flattening each tensor into
a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write rXz,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all
possible index tuples i, (rXz)i gives @z

@Xi
. This is exactly the same as how for all

possible integer indices i into a vector, (rxz)i gives @z

@xi
. Using this notation, we

can write the chain rule as it applies to tensors. If Y = g(X) and z = f(Y), then

rXz =
X

j

(rXYj)
@z

@Yj

. (6.47)
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Simple Back-Prop Example
CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.

0

z

0

g
(z

)
=

m
ax

{0
,
z
}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.
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(Goodfellow 2017)

Computation Graphs
CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

⇥

xx ww

(b)

u
(1)

u
(1)

dot

bb

u
(2)

u
(2)

+

ŷ̂y

�

(c)

XX WW

U
(1)

U
(1)

matmul

bb

U
(2)

U
(2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

��

u
(1)

u
(1)

sqr

u(2)u(2)

sum

u(3)u(3)

⇥

Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�
x

>
w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u

(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P
i w2

i .
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(Goodfellow 2017)

Repeated Subexpressions

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.

211
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f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.
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Figure 6.9
Back-prop avoids computing this twice
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Optional subtitle
Definition of Regularization

“Regularization is any modification we make to a learning algorithm that 
is intended to reduce its generalization error but not its training error.”
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Optional subtitle
To avoid overfitting, and improve generalization performance
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Some Observations of Deep Nets 
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Weight Decay as Constrained Optimization

• L1: Encourages sparsity, equivalent to MAP 

Bayesian estimation with Laplace prior

• Squared L2: Encourages small weights, 

equivalent to MAP Bayesian estimation with 

Gaussian prior
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Optional subtitle
Dataset Augmentation

(Goodfellow 2016)
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Optional subtitle
Adversarial Examples

Training on adversarial examples is mostly intended to improve security, but can 
sometimes provide generic regularization. 
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ADVERSARIAL MANIPULATION OF DEEP REPRESENTATIONS

(David Fleet’s Group, ICLR 2016)
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Optional subtitle
Learning Curves 

Why it works? 
Refer to “Deep 
Learning” book, Chap 
7.8.
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Optional subtitle
Bagging

(Goodfellow 2016)
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Batch Normalization

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015
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Before SGD step

After SGD step
“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015
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Deep Learning Building Blocks



Deep Learning: Zooming Out



Deep Learning: Zooming Out



Images

! Structured

! Classification

! Segmentation

! Medical images

! Generative Models

! Art



Sequences

! Words, Letters

! Speech

! Images, Videos, Touch

! Programs

! Sequential Decision Making (RL)



Deep Learning Vicious Cycle



Challenges of training very deep ConvNets



Building Very Deep ConvNets



(Some) Tricks of the Training Networks



Inception Net v2: Importance of Batch Norm
Higher accuracy and faster training with batch-norm



U-Net architecture



CycleGAN
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks



Practical Methodology 2



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions

In practice:



Babysitting the Learning Process



Three Step Process3 Step Process

• Use needs to define metric-based goals 

• Build an end-to-end system 

• Data-driven refinement



How to prepare the data?



Which model to use?



Choose Metrics
Choose Metrics

• Accuracy?          (% of examples correct) 

• Coverage?          (% of examples processed) 

• Precision?          (% of detections that are right) 

• Recall?              (% of objects detected) 

• Amount of error? (For regression problems)



Is the Loss Reasonable?(1)



Is the Loss Reasonable?(2)



Then, let’s try to train it.







Notice train/val accuracy goes to 20%



Now let’s try learning rate 1e6





How to do Cross Validation?






