Introduction to Statistical Learning and Machine Learning

Chap 7 － Neural
Network（Cont．）
Yanwei Fu
SDS，Fudan University

Applications by deep learning

人工智能领域的两股主流

基于统计学习的方法

在语音识别上的应用

｜音素（Phoneme）识别

2009年，Deep belief networks for phone recognition一文中，深度学习的错误率：23．0\％
与之比较，不同GMM方法相应错误率：
－Maximum Likelihood Training（MLT）：25．6\％，
－Sequence－Discriminative Training（SDT）：21．7\％

｜单词（Word）识别

2011年，Context－Dependent Pre－Trained Deep Neural Networks for Large－Vocabulary Speech Recognition一文中，深度学习的错误率：30．4\％

与之比较，不同GMM方法相应错误率：
－Maximum Likelihood Training（MLT）：39．6\％，
－Sequence－Discriminative Training（SDT）：36．2\％

在语音识别上的应用

对话识别

2011年基于深度学习取得了十年来的重大突破

2014年百度推出基于RNN的DeepSpeech

在 7380 小时语音上叠加不同背景噪音生成 10 万小时级数据

Dataset	Type	Hours	Speakers
WSJ	read	80	280
Switchboard	conversational	300	4000
Fisher	conversational	2000	23000
Baidu	read	5000	9600

Model	SWB	CH	Full
Vesely et al．（GMM－HMM BMMI）［43］	18.6	33.0	25.8
Vesely et al．（DNN－HMM sMBR）［43］	12.6	24.1	18.4
Maas et al．（DNN－HMM SWB）［28］	14.6	26.3	20.5
Maas et al．（DNN－HMM FSH）［28］	16.0	23.7	19.9
Seide et al．（CD－DNN）［39］	16.1	n／a	n／a
Kingsbury et al．（DNN－HMM sMBR HF）［22］	13.3	n／a	n／a
Sainath et al．（CNN－HMM）［36］	$\mathbf{1 1 . 5}$	n／a	n／a
DeepSpeech SWB	20.0	31.8	25.9
DeepSpeech SWB＋FSH	13.1	$\mathbf{1 9 . 9}$	$\mathbf{1 6 . 5}$

在图像识别上的应用

IIM石GENET大规模视觉识别挑战赛（ILSVRC 2014）

物体识别项目，15M图片，22K类

	名称	时间
AlexNet	2012年	Top－5 Error
OverFeat（New York University）	2013年	15.3%
VGG Net（Oxford）	2014年	13.8%
GoogLeNet（Google）	2014年	7.3%
人类	$/$	6.6%
Microsoft	2015年2月6日	5.1%
Google	2015年2月11日	4.94%
Microsoft	2015年12月10日	4.82%
Google	2015年12月11日	3.57%
Google	2016年2月23日	3.58%

在图像识别上的应用

｜人脸识别

LFW（5749个人，13233张人脸照片）

名称	时间	Top－1 Accuracy
传统方法	$/$	$\sim 96 \%$
DeepFace（Facebook）	2014年	97.35%
人类	$/$	97.53%
GaussianFace（香港中文大学）	2014年	98.52%
DeepID3（香港中文大学）	2015年2月	99.53%
Facenet（Google）	2015年6月	99.63%
腾讯优图	2015年10月	99.65%
百度IDL	2015年10月	99.77%

Youtube Face DB（8M个人，200M张人脸照片）
FaceNet（Google）识别率可达 95.12%（2015年）

在图像识别上的应用

｜关注度（Attention）

Yoshua Bengio团队，2016年

A

bird

flying

a

body

of

A woman is throwing a frisbee in a park．
 －

A little girl sitting on a bed with
a teddy bear．

A group of people sitting on a boat in the water．

在图像识别上的应用

海量图像的分类，识别

拍立淘

深度学习特征

局部特征

在图像识别上的应用

图像描述

Junhua Mao等人， 2016

The giraffe on the right．

A skier with a black helmet，light
blue and black jacket，backpack，The man in black and light grey pants standing．

Guy with dark short hair

＊The woman in white．

The controller in the woman＇s hand．

在图像识别上的应用

｜人群计数

Cong Zhang等人， 2016

Method	Scene 1	Scene 2	Scene 3	Scene 4	Scene 5	Average
LBP＋RR	13.6	58.9	37.1	21.8	23.4	31.0
Crowd CNN	10.0	15.4	15.3	25.6	4.1	14.1
Fine－tuned Crowd CNN	9.8	14.1	14.3	22.2	3.7	12.9
Luca Fiaschi et al．［7］	2.2	87.3	22.2	16.4	5.4	26.7
Ke et al．［6］	2.1	55.9	9.6	11.3	3.4	16.5
Crowd CNN＋RR	2.0	29.5	9.7	9.3	3.1	10.7

在图像处理上的应用

｜绘画风格变换

Leon A．Gatys等人， 2015

Style Reconstructions

Input image

在图像处理上的应用

Original／PSNR

K－SVD／ 25.94 dB

NE＋NNLS／ 25.61 dB
NE＋LLE／ 25.75 dB
ANR $/ 25.90 \mathrm{~dB}$
SRCNN $/ 27.58 \mathrm{~dB}$

在自然语言理解上的应用

Word2Vec的适时出现

词语获得了更稠密的向量表示
词语的相关性更容易计算（余弦距离）深度学习具备了重要的输入

输入：计算机		
		0.674172
自动化		0.614087
应用		0.611133
自动化系		0.607891
材料科学		0.600370
集成电路		0.597519
技术		0.591316
电子学		0.577239
建模		0.572856
工程学		0.570087
微电子		

Country and Capital Vectors Projected by PCA

在自然语言理解上的应用

｜定制化的NLP应用

将过去统计机器翻译的成熟成果迁移到神经网络模型上基于深度学习的情感分析
利用神经网络模型检测小说中的人物关系

｜从文本理解到文本生成

新闻，专利，百科词条，论文的生成智能人机对话系统

｜大规模知识图谱的构建与应用

阅读理解，机器翻译，文档摘要
新概念，新知识的自动学习
基于知识图谱实现智能推理

在自然语言理解上的应用

LSTM架构的认知解释

人阅读和机器阅读时的神经元活动是否可以相互预测？
LSTM架构在认知角度是否合理？

Model	Cosine Dist．	Similarity
Random	-0.128	0.436
BoW（tf－idf）	0.184	0.592
AveEmbedding	0.634	0.817
RNN＿hidden	0.016	0.508
LSTM＿hidden	0.224	0.612
LSTM＿memory	$\mathbf{0 . 7 2 4}$	$\mathbf{0 . 8 6 2}$

在围棋上的应用

｜AlphaGo

目前在GoRating上已经超越柯洁，李世石等人排名世界第一。
在目标确定，规则明确的任务中，（弱）人工智能击败人类是必然的

在．．．．．．省电上的应用

Google DeepMind

用于操控计算机服务器和相关设备（例如冷却系统）来管理部分数据中心，从而减少 15% 能耗

2014年总能耗
4，402，836兆瓦时

366，903个美国家庭x1年

商用电价
25美元至40美元／兆瓦时

在．．．．．．省电上的应用

Google DeepMind

用于操控计算机服务器和相关设备（例如冷却系统）来管理部分数据中心，从而減少 15% 能耗

在军事领域的应用

美国军方早已开展相关研究与应用

2009年DARPA已着手撰写关于深度学习的报告，2010年起开始资助相关项目

2012年资助DEFT项目（Deep Exploration and Filtering of Text），对海量文本数据进行分析

2015年资助TRACE项目（Target Recognition and Adaption in Contested Environments），对图像中的

在医疗领域的应用

｜多种分析技术已经在DNA分析，癌症预测等方面产生影晌

Princeton大学的DeepSEA可预测重要调控位点对单核苷酸变异的影响

Harvard大学的Basset可预测单核苷酸多态性对染色质可接近性的影响

Toronto大学的DeepBind 能发现 RNA与DNA上的蛋白结合位点，预测突变的影响

在智能制造领域的应用

｜Google在制造领域的工作（2016年）

14台机械臂，80万次抓取作为训练，可实现对未见过的软硬材质，透明，不同重量，异形等多样化物件的精准抓取

深度学习后续发展可能

｜局部最优

梯度弥散问题
局部极值问题

计算复杂度

永远存在复杂度的问题

｜人脑机理模拟

是否人脑的机制是最合适的？

｜人工设计的可能性

在初始化时引入人工是否有意义？

｜代价函数的设计优化

重构误差的考虑，引入惩罚项

整个网络的设计优化

DeconvNet，DeepPose．．．．．．

深度学习后续发展可能

数据集

更多种类，更大规模的数据集可能出现，如Feifei Li目前在推动的视觉基因组（Visual Genome）

- 108，249张图像
- 4．2M个区域描述
- 1.7 M 个视觉问题问答答案
- 2.1 M 个实体概念
- 1.8 M 个属性描述
- 1.8 M 个关系描述

One－Shot Learning

深度学习利用需要借助大量训练数据才能实现其强大威力人类却能仅通过有限样例就能学习到新的概念和类别

深度学习后续发展可能

分布式框架软件

发挥CPU＋GPU的混合性能

Spark

｜指令集与计算芯片

针对深度学习优化的新架构

寒武纪处理芯片

体系结构顶级会议ISCA 2016中

- 9篇与深度学习相关（共57篇）
- 1篇为评分最高论文

专用处理芯片

以FPGA为主的解决方案

降低成本，降低功耗

更多类型的新处理芯片？
Tensor Processing Unit（TPU）？

智能的三种类型

感知智能

对视觉，听觉，触觉等感知能力的模拟

认知智能

对推理，规划，决策，学习等认知能力的模拟

｜创造性智能

对灵感，顿悟等能力的模拟

深度学习已经解决一切了吗？

深度学习已经解决一切了吗？

A．机判为熊猫
（正确）

小噪声扰动

B．机判为猿猴
（错误）

深度学习已经解决一切了吗？

Chap 7－Peaep
 －Regularization
 Neural Network
 －Batch Normalization

Back-Propagation

- Back-propagation is "just the chain rule" of calculus

$$
\begin{align*}
& \frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} . \tag{6.44}\\
& \nabla_{\boldsymbol{x}} z=\left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}\right)^{\top} \nabla_{\boldsymbol{y}} z, \tag{6.46}
\end{align*}
$$

- But it's a particular implementation of the chain rule
- Uses dynamic programming (table filling)
- Avoids recomputing repeated subexpressions
- Speed vs memory tradeoff

Simple Back-Prop Example

Compute loss

Computation Graphs

Figure 6.8

Repeated Subexpressions

Figure 6.9

Regularization for Deep Learning

Definition of Regularization

＂Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error．＂

To avoid overfitting，and improve generalization performance

 Optional subtitle

Some Observations of Deep Nets

\＃of parameters＞＞\＃of data，hence easy to fit data
｜＞Without regularization，deep nets also have benign generalization
For random label or random feature，deep nets converge with 0 training error but without any generalization

Weight Decay as Constrained Optimization

$$
\boldsymbol{\theta}_{\mathrm{MAP}}=\underset{\boldsymbol{\theta}}{\arg \max } p(\boldsymbol{\theta} \mid \boldsymbol{x})=\underset{\boldsymbol{\theta}}{\arg \max } \log p(\boldsymbol{x} \mid \boldsymbol{\theta})+\log p(\boldsymbol{\theta}) .
$$

Figure 7.1

Dataset Augmentation

Adversarial Examples

Optional subtitle

Training on adversarial examples is mostly intended to improve security，but can sometimes provide generic regularization．

adversarial manipulation of deep representations

Figure 1：Each row shows examples of adversarial images，optimized using different layers of Caf－ fenet（ $\mathrm{FC} 7, \mathrm{P} 5$ ，and C 3 ），and different values of $\delta=(5,10,15)$ ．Beside each adversarial image is the difference between its corresponding source image．

Let I_{s} and I_{g} denote the source and guide images．Let ϕ_{k} be the mapping from an image to its internal DNN representation at layer k ．Our goal is to find a new image，I_{α} ，such that the Euclidian distance between $\phi_{k}\left(I_{\alpha}\right)$ and $\phi_{k}\left(I_{g}\right)$ is as small as possible，while I_{α} remains close to the source I_{s} ． More precisely，I_{α} is defined to be the solution to a constrained optimization problem：

$$
\begin{array}{r}
I_{\alpha}=\arg \min _{I}\left\|\phi_{k}(I)-\phi_{k}\left(I_{g}\right)\right\|_{2}^{2} \\
\text { subject to }\left\|I-I_{s}\right\|_{\infty}<\delta \tag{2}
\end{array}
$$

Learning Curves

Early stopping：terminate while validation set performance is better

Figure 7.3 Schuol ur Dala Science

Bagging
(9) (6) (8)

Figure 7.5

Batch

＂Batch Normalization：Accelerating Deep Network Training by Reducing Internal Normalization Covariate Shift，＂loffe and Szegedy 2015

Batch Normalization

$$
\begin{aligned}
\boldsymbol{Z} & =\boldsymbol{X} \boldsymbol{W} \\
\tilde{\boldsymbol{Z}} & =\boldsymbol{Z}-\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{Z}_{i,:} \\
\hat{\boldsymbol{Z}} & =\frac{\tilde{\boldsymbol{Z}}}{\sqrt{\epsilon+\frac{1}{m} \sum_{i=1}^{m} \tilde{\boldsymbol{Z}}_{i,:}^{2}}} \\
\boldsymbol{H} & =\max \{0, \gamma \hat{\boldsymbol{Z}}+\boldsymbol{\beta}\}
\end{aligned}
$$

"Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift," loffe and Szegedy 2015

Deep Learning Building Blocks

Deep Learning: Zooming Out

Platforms

Frameworks
 Caffe K Keras CNTK mxnet theano PYTORCH ${ }^{+{ }^{+}}$Caffe2

Datasets

Caltech 101 magenet
Dinguistic Data Consortium

Deep Learning: Zooming Out

Non-Linearities
Relu
Sigmoid
Tanh
GRU
LSTM
Linear
...

Connectivity Pattern
Fully connected
Convolutional
Dilated
Recurrent
Recursive
Skip / Residual
Random

SGD
Momentum
RMSProp
Adagrad
Adam
Second Order (KFac)

Loss

Cross Entropy
Adversarial
Variational
Max. Likelihood
Sparse
L2 Reg
REINFORCE

Hyper Parameters
Learning Rate
Decay
Layer Size
Batch Size
Dropout Rate
Weight init
Data augmentation
Gradient Clipping
Beta
Momentum

Images

- Structured
- Classification
- Segmentation
- Medical images
- Generative Models
- Art

http://www.image-net.org/

Progressive GANs, Karras et al, 2017

A Neural Algorithm of Artistic Style Gatys et al, 2015

Sequences

- Words, Letters

50 years ago, the fathers of artificial intelligence convinced everybody that logic was the key to intelligence. Somehow we had to get computers to do logical reasoning. The alternative approach, which they thought was crazy, was to forget logic and try and understand how networks of brain cells learn things. Curiously, two people who rejected the logic based approach to AI were Turing and Von Neumann. If either of them had lived I think things would have turned out differently... now neural networks are everywhere and the crazy approach is winning.

- Speech
- Images, Videos, Touch
- Programs while (*d++ = *st+) ;
- Sequential Decision Making (RL)

Deep Learning Vicious Cycle

Model Runs \Longrightarrow| Loss Goes |
| :---: |
| Down |

Challenges of training very deep ConvNets

- We have seen that depth is important
- Why not to keep adding layers?

Two main reasons:

- computational complexity
- ConvNet will be too slow to train and evaluate
- optimisation
- we won't be able to train such nets

Building Very Deep ConvNets

- Use stacks of small (3×3) conv. layers
- in most cases, the only kernel size you need
- a cheap way of building a deep ConvNet
- Stacks have a large receptive field
- two 3×3 layers -5×5 field
- three 3×3 layers -7×7 field
- Less parameters than a single layer with a large kernel

(Some) Tricks of the Training Networks

- Optimization
- SGD with momentum - typical choice for ConvNets
- Batch Norm
- Initialization
- Weight init: start from the weights which lead to stable training
- Sample from zero-mean normal distribution w/ small variance 0.01
- Adaptively choose variance for each layer
- preserve gradient magnitude [Glorot \& Bengio, 2010]: 1/sqrt(fan_in)
- works fine for VGGNets (up to 20 layers), but not sufficient for deeper nets
- Model
- Stacking 3×3 convolutions
- Inception
- ResNet adds modules which ensure that the gradient doesn't vanish

Inception Net v2: Importance of Batch Norm

Higher accuracy and faster training with batch-norm

U-Net architecture

1. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.

CycleGAN

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Figure 3: Two choices for the architecture of the generator. The "U-Net" [34] is an encoder-decoder with skip connections between mirrored layers in the encoder and decoder stacks.

Activation Functions

Activation Functions

Activation Functions

synapse

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$
tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU

 $\max (0.1 x, x)$

Maxout
$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU

 $\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zero-centered
3. $\exp ()$ is a bit compute expensive

Activation Functions

Sigmoid

$\sigma(x)=1 /\left(1+e^{-x}\right)$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zero-centered
3. $\exp ()$ is a bit compute expensive

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated

Activation Functions

Sigmoid

$$
\sigma(x)=1 /\left(1+e^{-x}\right)
$$

- Squashes numbers to range $[0,1]$
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

1. Saturated neurons "kill" the gradients
2. Sigmoid outputs are not zero-centered
3. $\exp ()$ is a bit compute expensive

$\tanh (x)$

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated

ReLU

(Rectified Linear Unit)

- Computes $\mathrm{f}(\mathrm{x})=\max (\mathbf{0}, \mathbf{x})$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Actually more biologically plausible than sigmoid
- Not zero-centered output
- An annoyance:
dead ReLU
will never activate
=> never update

Activation Functions

Leaky ReLU

$$
f(x)=\max (0.01 x, x)
$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x
- will not "die".

Parametric Rectifier (PReLU)
$f(x)=\max (\alpha x, x)$
backprop into \alpha
(parameter)

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

Problem: doubles the number of parameters/neuron :(

Activation Functions

Leaky ReLU

$$
f(x)=\max (0.01 x, x)
$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x
- will not "die".

Parametric Rectifier (PReLU)
$f(x)=\max (\alpha x, x)$
backprop into \alpha
(parameter)

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

Problem: doubles the number of parameters/neuron :(

In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Babysitting the Learning Process

Three Step Process

- Use needs to define metric-based goals
- Build an end-to-end system
- Data-driven refinement

How to prepare the data?

Step 1: Preprocess the data

original data

zero-centered data

normalized data

(Assume $\mathrm{X}[\mathrm{NxD}]$ is data matrix, each example in a row)

Which model to use?

Step 2: Choose the architecture:

say we start with one hidden layer of 50 neurons:

Choose Metrics

- Accuracy?
(\% of examples correct)
- Coverage? (\% of examples processed)
- Precision? (\% of detections that are right)
- Recall? (\% of objects detected)
- Amount of error? (For regression problems)

Is the Loss Reasonable?(1)
 Double check that the loss is reasonable:

```
def init_two_layer_model(input_size, hidden_size, output_size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input_size, hidden_size)
    model['bl'] = np.zeros(hidden size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```


Is the Loss Reasonable?(2)

```
def init two layer model(input size, hidden size, output size):
    # initialize a model
    model = {}
    model['W1'] = 0.0001 * np.random.randn(input size, hidden size)
    model['b1'] = np.zeros(hidden size)
    model['W2'] = 0.0001 * np.random.randn(hidden_size, output_size)
    model['b2'] = np.zeros(output_size)
    return model
```

model = init two layer_model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes
loss, grad = two_layer_net (x_train, model, y_train, 1e3). crank up regularization
loss, grad
crank up regularization
3.06859716482
loss went up, good. (sanity check)

Then, let's try to train it.

Lets try to train now...
Tip: Make sure that you can overfit very small portion of the training data
model $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes
trainer = ClāssifierTräiner()
x tiny $=\mathrm{x}$ train $[: 20]$ \# take 20 examples
x -tiny $=\mathrm{x}$-train[:20]
y -tiny $=\mathrm{y}^{\text {-train [: } 20]}$

mōdel, two layer \bar{n} et
num epochs $=200$, $\overline{r e g}=0.0$
updāte='sgd', learning_rate_decay=1,
sample batches $=$ False,
learning_rate $=1 \mathrm{e}-3$, verbose=True)

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

Lets try to train now...

Tip: Make sure that you can overfit very small portion of the training data

> Very small loss, train accuracy 1.00, nice!
model $=$ init two layer model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClassifierTrainer()
X_tiny $=$ X_train [:20] \# take 20 examples
y_tiny $=y_{\text {_ }}$ train $[: 20]$
best_model, stats = trainer.train(X_tiny, y tiny, X_tiny, y_tiny,
model, two layer net,
num epochs $=200$, $\bar{r} e g=0.0$,
update='sgd', learning rate decay=1
sample batches $=$ False,
learning rate $=1 \mathrm{e}-3$, verbose=True)

Finished epoch $195 / 200$: cost 0.002694 , train: 1.000000 , val 1.000000 , lr $1.000000 \mathrm{e}-03$ Finished epoch 196 / 200: cost 0.002674 train: 1.000000 val 1.000000 lr $1.000000 e-03$ Finished epoch 197 200: cost 0.002655 train 1.000000 wa 1.000000 ir l.000000e-03 Finished epoch 197 200: cost 0.002635 , train: 1.000000 , val 1.000000 , ir $1.000000 \mathrm{e}-03$ Finished epoch 198 200 , in $1.000000 \mathrm{e}-03$ Finis din 1.00000 , val 1.000000, ir 1.000000 finished optimization best validation accuracy: 1.000000

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.
model = init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer $=$ ClassifierTrainer()
best_model, stats = trainer.train(X_train, y_train, $x_{_}$val, $y_{\text {_ }}$ val,
mōdel, two_layer_nē
num epochs=10, reg=0.000001
updāte='sgd', learning_rate_decay=1, sample_batches = True,
learning_rate=1e-6, verbose=True)

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

model $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best_model, stats = trainer.train (X_train, y_train, X_val, y_val,
mōdel, two_layer_nēt,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sumpte_batches = Trie,
learning rate $=1 e-6$, verbose=True)

Finished epoch $1 / 10: \operatorname{cost} 2.302576$, trair: 0.080000 , val 0.103000 , lr $1.000000 \mathrm{e}-06$

 Finished epoch $2 / 10:$ cost 2.302582, train: 0.121000 , val 0.124000 , lr $1.000000 \mathrm{e}-06$ Finished epoch $3 / 10$: cost 2.302558 , train: 0.119000 , val 0.138000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$ Finished epoch $4 / 10:$ cost 2.302519 , train: 0.127000 , Val 0.151000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$ Finished epoch $5 / 10:$ cost 2.302517, train: 0.158000 , Val 0.171000 , lr $1.000000 \mathrm{e}-06$ Finished epoch $6 / 10: \operatorname{cost} 2.302518$, train: 0.179000 , val 0.172000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$ Finished epoch $7 / 10:$ cost 2.302466 , train: $0.180000, ~ v a l 0.176000$, $\operatorname{lr} 1.000000 \mathrm{e}-06$ Finished epoch $8 / 10$. Finished epoch $9 / 10$: cost 2.302459, trair: 0.206000 , val 0.192000, lr 1.000000e-06 Finished epoch $10 / 10$ cost 2.302420 train: 0.190000 , val 0.192000 , $\operatorname{lr} 1.000000 \mathrm{e}-06$Loss barely changing
Notice train/val accuracy goes to 20\%

Now let's try learning rate 1 e6

Lets try to train now...
Start with small regularization and find learning rate that makes the loss go down.
loss not going down: learning rate too low loss exploding: learning rate too high
model = init_two layer_model($32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClassifierTrainer(
best model, stats = trainer.train(X_train, y_train, X_val, y_val,
model, two layer net
num_epochs $=10$, $r \overline{r e g}=0.000001$
updäte='sgd', learning_rate_decay=1,
sample batches $=$ True
learning rate $=1 \mathrm{e} 6$, verbose=True)
/home/karpathy/cs231n/code/cs231n/classifiers/neural_net.py:50: RuntimeWarning: divide by zero en countered in log
data loss $=-n p . \operatorname{sum}(n p . \log ($ probs $[$ range $(N), y])) / N$
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc ountered in subtract
probs $=n p . \exp (s c o r e s ~-n p . \max (s c o r e s, ~ a x i s=1$, keepdims=True))
Finished epoch $1 / 10$: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06 Finished epoch 2 / 10: cost an, train: 0.095000, val 0.087000, lr 1000000 Finished epoch $3 / 10$: cost nan, train: 0.100000 , val 0.087000 , lr $1.000000 \mathrm{e}+66$
cost: NaN almost always means high learning rate...

Lets try to train now...

Start with small regularization and find learning rate that makes the loss go down.

loss not going down:

 learning rate too low loss exploding: learning rate too highmodel $=$ init two layer model(32*32*3, 50, 10) \# input size, hidden size, number of classes trainer $=$ ClāssifierTräner()
best_model, stats = trainer. train(x_train, y_train, X_val, y_val,
mōdel, two_layer_net,
num epochs $=10$, reg=0.000001,
update='sgd', learning_rate_decay=1,
sample batches $=$ True,
learning_rate=3e-3, verbose=True)
Finished epoch $1 / 10:$ cost 2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03 Finished epoch $2 / 10$: cost 2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03 Finished epoch $3 / 10$: cost 1.942257 , train: 0.376000 , val 0.352000 , $1 r 3.000000 \mathrm{e}-03$ Finished epoch $4 / 10$: cost 1.827868, train: 0.329000, val 0.310000, ir 3.000000e-03 Finished epoch $5 / 10$: cost inf, train: 0.128000, val 0.128000, lr 3.000000e-03 Finished epoch $6 / 10:$ cost inf, train: 0.144000 , val 0.147000 , $\operatorname{lr} 3.000000 \mathrm{e}-03$
=> Rough range for learning rate we should be cross-validating is
somewhere [1e-3 ... 1e-5]

How to do Cross Validation?

coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

For example: run coarse search for 5 epochs

max_count $=100$
for count in xrange (max count) reg $=10^{* *}$ uniform $(-5,5)$ $\mathrm{lr}=10 * *$ uniform($-3,-6$)
trainer = ClassifierTrainer()
model = init two layer model $(32 * 32 * 3,50,10)$ \# input size, hidden size, number of classes trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val, model, two_layer_net, num epochs=5, reg=reg,
update='momentum', learning rate decay=0.9, sample batches $=$ True, batch_size $=100$, learning rate $=l r$, verbose $=F a l s e$)

Now run finer search...

max_count $=100$
for count in xrange(max count): reg $=10^{* *}$ uniform $(-5,5)$ $\operatorname{lr}=10^{* *}$ uniform $(-3,-6)$
adjust range
max count $=100$
for count in x range (max count): reg $=10^{* *}$ uniform $(-4,0)$
val_acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100) Vat acc: 0.492000 , rr: $2.219484 \mathrm{e}-04$, reg: $9.991345 \mathrm{e}-04$, (1/ 100)
val acc: 0.512000, 1r: 8.680827e-04, reg: $1.349727 \mathrm{e}-02$, (2 / 100 val acc: 0.461000, $1 \mathrm{r}: 1.028377 \mathrm{e}-04$, reg: $1.220193 \mathrm{e}-02,(3 / 100)$ val_acc: $0.460000,1 r: 1.113730 e-04$, reg: $5.244309 \mathrm{e}-02,(4 / 100)$ val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) val acc: 0.469000, $1 r: 1.484369 \mathrm{e}-04$, req: $4.328313 \mathrm{e}-01$ ($6 / 10 \mathrm{e}$ val acc: 0.522000 lr: $5.586261 \mathrm{e}-04$, reg: $2.312685 \mathrm{e}-04$ ($7 / 100$) $7 / 100$ val acc: $0.530000, \mathrm{lr}: 5.808183 \mathrm{e}-04, \mathrm{reg}: 8.259964 \mathrm{e}-02,(8 / 100)$ val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100) val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12/100) val-acc: 0.515000 , lr: $6.947668 \mathrm{e}-04$, reg: $1.562808 \mathrm{e}-02$, ($13 / 100$)
val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14/100) val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15/100) val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100) val acc: 0.502000, $1 r: 3.921784 \mathrm{e}-04$, reg: $2.707126 \mathrm{e}-04,(17 / 100)$ val_acc: 0.509000, $1 \mathrm{r}: 9.752279 \mathrm{e}-04$, reg: $2.850865 \mathrm{e}-03$, ($18 / 100$) val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19/100) val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100) val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21/100)

53\% - relatively good for a 2-layer neural net with 50 hidden neurons.

