
Introduction to
Statistical Learning

and Machine Learning

Chap 7 -
Neural
Network(Cont.)
Yanwei Fu
SDS, Fudan University

Fudan-SDS Confidential - Do Not Distribute

 Applications by
deep learning

Fudan-SDS Confidential - Do Not Distribute

⼈人⼯工智能领域的两股主流

基于统计学习的⽅方法

基于神经⽹网络的⽅方法

在语⾳音识别上的应⽤用

⾳音素（Phoneme）识别
2009年年，Deep belief networks for phone recognition⼀一⽂文中，深度学习的错误率：23.0%

与之⽐比较，不不同GMM⽅方法相应错误率：
• Maximum Likelihood Training (MLT)：25.6%,
• Sequence-Discriminative Training (SDT)： 21.7%

单词（Word）识别
2011年年， Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech
Recognition⼀一⽂文中，深度学习的错误率：30.4%

与之⽐比较，不不同GMM⽅方法相应错误率：
• Maximum Likelihood Training (MLT)：39.6%,
• Sequence-Discriminative Training (SDT)： 36.2%

在语⾳音识别上的应⽤用

对话识别
2011年年基于深度学习取得了了⼗十年年来的重⼤大突破

2014年年百度推出基于RNN的DeepSpeech
在7380⼩小时语⾳音上叠加不不同背景噪⾳音⽣生成10万⼩小时级数据

在图像识别上的应⽤用

 ⼤大规模视觉识别挑战赛（ILSVRC 2014）
物体识别项⽬目，15M图⽚片，22K类

名称 时间 Top-5 Error
AlexNet 2012年年 15.3%
OverFeat（New York University） 2013年年 13.8%
VGG Net（Oxford） 2014年年 7.3%
GoogLeNet（Google） 2014年年 6.6%
⼈人类 / 5.1%
Microsoft 2015年年2⽉月6⽇日 4.94%
Google 2015年年2⽉月11⽇日 4.82%
Microsoft 2015年年12⽉月10⽇日 3.57%
Google 2015年年12⽉月11⽇日 3.58%
Google 2016年年2⽉月23⽇日 3.08%

在图像识别上的应⽤用

⼈人脸识别
LFW（5749个⼈人，13233张⼈人脸照⽚片）

名称 时间 Top-1 Accuracy
传统⽅方法 / ~96%
DeepFace（Facebook） 2014年年 97.35%
⼈人类 / 97.53%
GaussianFace（⾹香港中⽂文⼤大学） 2014年年 98.52%
DeepID3（⾹香港中⽂文⼤大学） 2015年年2⽉月 99.53%
Facenet（Google） 2015年年6⽉月 99.63%
腾讯优图 2015年年10⽉月 99.65%
百度IDL 2015年年10⽉月 99.77%

Youtube Face DB（8M个⼈人，200M张⼈人脸照⽚片）
FaceNet（Google）识别率可达95.12%（2015年年）

在图像识别上的应⽤用

关注度（Attention）
Yoshua Bengio团队，2016年年

在图像识别上的应⽤用

海海量量图像的分类、识别
拍⽴立淘

在图像识别上的应⽤用

图像描述
Junhua Mao等⼈人，2016

在图像识别上的应⽤用

⼈人群计数
Cong Zhang等⼈人，2016

在图像处理理上的应⽤用

绘画⻛风格变换
Leon A. Gatys等⼈人，2015

在图像处理理上的应⽤用

超分辨率
2014年年Xiaoou Tang等⼈人的⼯工作
信噪⽐比⾼高、速度快

在⾃自然语⾔言理理解上的应⽤用

Word2Vec的适时出现
词语获得了了更更稠密的向量量表示
词语的相关性更更容易易计算（余弦距离）
深度学习具备了了重要的输⼊入

输⼊入：计算机

⾃自动化 0.674172

应⽤用 0.614087

⾃自动化系 0.611133

材料料科学 0.607891

集成电路路 0.600370

技术 0.597519

电⼦子学 0.591316

建模 0.577239

⼯工程学 0.572856

微电⼦子 0.570087

在⾃自然语⾔言理理解上的应⽤用

定制化的NLP应⽤用
将过去统计机器器翻译的成熟成果迁移到神经⽹网络模型上
基于深度学习的情感分析
利利⽤用神经⽹网络模型检测⼩小说中的⼈人物关系

⼤大规模知识图谱的构建与应⽤用
阅读理理解、机器器翻译、⽂文档摘要
新概念、新知识的⾃自动学习
基于知识图谱实现智能推理理

从⽂文本理理解到⽂文本⽣生成
新闻、专利利、百科词条、论⽂文的⽣生成
智能⼈人机对话系统

在⾃自然语⾔言理理解上的应⽤用

LSTM架构的认知解释
⼈人阅读和机器器阅读时的神经元活动是否可以相互预测？
LSTM架构在认知⻆角度是否合理理？

在围棋上的应⽤用

AlphaGo
⽬目前在GoRating上已经超越柯洁、李李世⽯石等⼈人排名世界第⼀一。
在⽬目标确定、规则明确的任务中，（弱）⼈人⼯工智能击败⼈人类是必然的

在……省电上的应⽤用

Google DeepMind
⽤用于操控计算机服务器器和相关设备（例例如冷却系统）来管理理部分数据中⼼心，从⽽而减少15%能耗

2014年年总能耗
4,402,836兆瓦时 366,903个美国家庭x1年年

商⽤用电价
25美元⾄至40美元/兆瓦时

总计可节省16,500,000-26,500,000美元/年年

在……省电上的应⽤用

Google DeepMind
⽤用于操控计算机服务器器和相关设备（例例如冷却系统）来管理理部分数据中⼼心，从⽽而减少15%能耗

在军事领域的应⽤用

美国军⽅方早已开展相关研究与应⽤用
2009年年DARPA已着⼿手撰写关于深度学习的报告，2010年年起开始资助相关项⽬目

2015年年资助TRACE项⽬目（Target Recognition and
Adaption in Contested Environments ），对图像中的
⽬目标进⾏行行识别

2012年年资助DEFT项⽬目（Deep Exploration and
Filtering of Text），对海海量量⽂文本数据进⾏行行分析

在医疗领域的应⽤用

多种分析技术已经在DNA分析、癌症预测等⽅方⾯面产⽣生影响
Harvard⼤大学的Basset可预测单核
苷酸多态性对染⾊色质可接近性的影
响

Princeton⼤大学的DeepSEA可预
测重要调控位点对单核苷酸变
异的影响

Toronto⼤大学的DeepBind 能发现
RNA与DNA上的蛋⽩白结合位点，
预测突变的影响

在智能制造领域的应⽤用

Google在制造领域的⼯工作（2016年年）
14台机械臂，80万次抓取作为训练，可实现对未⻅见过的软硬材质、透明、不不同重量量、异形等多样化物件
的精准抓取

深度学习后续发展可能

局部最优
梯度弥散问题
局部极值问题

计算复杂度
永远存在复杂度的问题

⼈人脑机理理模拟
是否⼈人脑的机制是最合适的？

⼈人⼯工设计的可能性
在初始化时引⼊入⼈人⼯工是否有意义？

代价函数的设计优化
重构误差的考虑、引⼊入惩罚项

整个⽹网络的设计优化
DeconvNet，DeepPose……

深度学习后续发展可能

数据集
更更多种类、更更⼤大规模的数据集可能出现，如Feifei Li⽬目前在推动的视觉基因组（Visual Genome）
• 108,249张图像
• 4.2M个区域描述
• 1.7M个视觉问题问答答案
• 2.1M个实体概念
• 1.8M个属性描述
• 1.8M个关系描述

One-Shot Learning
深度学习利利⽤用需要借助⼤大量量训练数据才能实现其强⼤大威⼒力力
⼈人类却能仅通过有限样例例就能学习到新的概念和类别

深度学习后续发展可能

分布式框架软件
发挥CPU+GPU的混合性能

指令集与计算芯⽚片
针对深度学习优化的新架构

专⽤用处理理芯⽚片
以FPGA为主的解决⽅方案

寒武纪处理理芯⽚片

体系结构顶级会议ISCA 2016中
• 9篇与深度学习相关（共57篇）
• 1篇为评分最⾼高论⽂文

降低成本、降低功耗

更更多类型的新处理理芯⽚片？
Tensor Processing Unit（TPU）？

智能的三种类型

感知智能
对视觉、听觉、触觉等感知
能⼒力力的模拟

认知智能
对推理理、规划、决策、学习
等认知能⼒力力的模拟

创造性智能
对灵感、顿悟等能⼒力力的模拟

深度学习已经解决⼀一切了了吗？

深度学习已经解决⼀一切了了吗？

A. 机判为熊猫
(正确)

⼩小噪声扰动 B.机判为猿猴
(错误)

深度学习已经解决⼀一切了了吗？

Chap 7 -

Neural Network

• Recap
• Regularization
• Batch Normalization

Fudan-SDS Confidential - Do Not Distribute

(Goodfellow 2017)

Back-Propagation
• Back-propagation is “just the chain rule” of calculus

• But it’s a particular implementation of the chain rule

• Uses dynamic programming (table filling)

• Avoids recomputing repeated subexpressions

• Speed vs memory tradeoff

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

the chain rule states that
dz

dx
=

dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x 2 Rm, y 2 Rn,
g maps from Rm to Rn, and f maps from Rn to R. If y = g(x) and z = f(y), then

@z

@xi

=
X

j

@z

@yj

@yj

@xi

. (6.45)

In vector notation, this may be equivalently written as

rxz =

✓
@y

@x

◆>
ryz, (6.46)

where @y

@x
is the n ⇥ m Jacobian matrix of g.

From this we see that the gradient of a variable x can be obtained by multiplying
a Jacobian matrix @y

@x
by a gradient ryz. The back-propagation algorithm consists

of performing such a Jacobian-gradient product for each operation in the graph.
Usually we apply the back-propagation algorithm to tensors of arbitrary di-

mensionality, not merely to vectors. Conceptually, this is exactly the same as
back-propagation with vectors. The only difference is how the numbers are ar-
ranged in a grid to form a tensor. We could imagine flattening each tensor into
a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write rXz,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all
possible index tuples i, (rXz)i gives @z

@Xi
. This is exactly the same as how for all

possible integer indices i into a vector, (rxz)i gives @z

@xi
. Using this notation, we

can write the chain rule as it applies to tensors. If Y = g(X) and z = f(Y), then

rXz =
X

j

(rXYj)
@z

@Yj

. (6.47)

203

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

the chain rule states that
dz

dx
=

dz

dy

dy

dx
. (6.44)

We can generalize this beyond the scalar case. Suppose that x 2 Rm, y 2 Rn,
g maps from Rm to Rn, and f maps from Rn to R. If y = g(x) and z = f(y), then

@z

@xi

=
X

j

@z

@yj

@yj

@xi

. (6.45)

In vector notation, this may be equivalently written as

rxz =

✓
@y

@x

◆>
ryz, (6.46)

where @y

@x
is the n ⇥ m Jacobian matrix of g.

From this we see that the gradient of a variable x can be obtained by multiplying
a Jacobian matrix @y

@x
by a gradient ryz. The back-propagation algorithm consists

of performing such a Jacobian-gradient product for each operation in the graph.
Usually we apply the back-propagation algorithm to tensors of arbitrary di-

mensionality, not merely to vectors. Conceptually, this is exactly the same as
back-propagation with vectors. The only difference is how the numbers are ar-
ranged in a grid to form a tensor. We could imagine flattening each tensor into
a vector before we run back-propagation, computing a vector-valued gradient,
and then reshaping the gradient back into a tensor. In this rearranged view,
back-propagation is still just multiplying Jacobians by gradients.

To denote the gradient of a value z with respect to a tensor X, we write rXz,
just as if X were a vector. The indices into X now have multiple coordinates—for
example, a 3-D tensor is indexed by three coordinates. We can abstract this away
by using a single variable i to represent the complete tuple of indices. For all
possible index tuples i, (rXz)i gives @z

@Xi
. This is exactly the same as how for all

possible integer indices i into a vector, (rxz)i gives @z

@xi
. Using this notation, we

can write the chain rule as it applies to tensors. If Y = g(X) and z = f(Y), then

rXz =
X

j

(rXYj)
@z

@Yj

. (6.47)

203

(Goodfellow 2017)

Simple Back-Prop Example
CHAPTER 6. DEEP FEEDFORWARD NETWORKS

yy

hh

xx

W

w

yy

h1h1

x1x1

h2h2

x2x2

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.

0

z

0

g
(z

)
=

m
ax

{0
,
z
}

Figure 6.3: The rectified linear activation function. This activation function is the default
activation function recommended for use with most feedforward neural networks. Applying
this function to the output of a linear transformation yields a nonlinear transformation.
The function remains very close to linear, however, in the sense that is a piecewise linear
function with two linear pieces. Because rectified linear units are nearly linear, they
preserve many of the properties that make linear models easy to optimize with gradient-
based methods. They also preserve many of the properties that make linear models
generalize well. A common principle throughout computer science is that we can build
complicated systems from minimal components. Much as a Turing machine’s memory
needs only to be able to store 0 or 1 states, we can build a universal function approximator
from rectified linear functions.

170

Fo
rw

ar
d

pr
op Back-prop

C
om

pu
te

 a
ct

iv
at

io
ns

C
om

pute derivatives

Compute loss

(Goodfellow 2017)

Computation Graphs
CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx yy

(a)

⇥

xx ww

(b)

u
(1)

u
(1)

dot

bb

u
(2)

u
(2)

+

ŷ̂y

�

(c)

XX WW

U
(1)

U
(1)

matmul

bb

U
(2)

U
(2)

+

HH

relu

xx ww

(d)

ŷ̂y

dot

��

u
(1)

u
(1)

sqr

u(2)u(2)

sum

u(3)u(3)

⇥

Figure 6.8: Examples of computational graphs. (a)The graph using the ⇥ operation to
compute z = xy. (b)The graph for the logistic regression prediction ŷ = �

�
x

>
w + b

�
.

Some of the intermediate expressions do not have names in the algebraic expression
but need names in the graph. We simply name the i-th such variable u

(i). (c)The
computational graph for the expression H = max{0, XW + b}, which computes a design
matrix of rectified linear unit activations H given a design matrix containing a minibatch
of inputs X. (d)Examples a–c applied at most one operation to each variable, but it
is possible to apply more than one operation. Here we show a computation graph that
applies more than one operation to the weights w of a linear regression model. The
weights are used to make both the prediction ŷ and the weight decay penalty �

P
i w2

i .

206

Figure 6.8

Multiplication

ReLU layer

Logistic regression

Linear regression
and weight decay

(Goodfellow 2017)

Repeated Subexpressions

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.

211

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

zz

xx

yy

ww

f

f

f

Figure 6.9: A computational graph that results in repeated subexpressions when computing
the gradient. Let w 2 R be the input to the graph. We use the same function f : R ! R
as the operation that we apply at every step of a chain: x = f(w), y = f(x), z = f(y).
To compute @z

@w , we apply equation 6.44 and obtain:

@z

@w
(6.50)

=
@z

@y

@y

@x

@x

@w
(6.51)

=f 0(y)f 0(x)f 0(w) (6.52)
=f 0(f(f(w)))f 0(f(w))f 0(w) (6.53)

Equation 6.52 suggests an implementation in which we compute the value of f(w) only
once and store it in the variable x. This is the approach taken by the back-propagation
algorithm. An alternative approach is suggested by equation 6.53, where the subexpression
f(w) appears more than once. In the alternative approach, f(w) is recomputed each time
it is needed. When the memory required to store the value of these expressions is low, the
back-propagation approach of equation 6.52 is clearly preferable because of its reduced
runtime. However, equation 6.53 is also a valid implementation of the chain rule, and is
useful when memory is limited.

211

Figure 6.9
Back-prop avoids computing this twice

Regularization
for Deep
Learning

Fudan-SDS Confidential - Do Not Distribute

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
Definition of Regularization

“Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error.”

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
To avoid overfitting, and improve generalization performance

Fudan-SDS Confidential - Do Not Distribute

Some Observations of Deep Nets

Fudan-SDS Confidential - Do Not Distribute

Weight Decay as Constrained Optimization

• L1: Encourages sparsity, equivalent to MAP

Bayesian estimation with Laplace prior

• Squared L2: Encourages small weights,

equivalent to MAP Bayesian estimation with

Gaussian prior

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
Dataset Augmentation

(Goodfellow 2016)

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
Adversarial Examples

Training on adversarial examples is mostly intended to improve security, but can
sometimes provide generic regularization.

Fudan-SDS Confidential - Do Not Distribute

ADVERSARIAL MANIPULATION OF DEEP REPRESENTATIONS

(David Fleet’s Group, ICLR 2016)

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
Learning Curves

Why it works?
Refer to “Deep
Learning” book, Chap
7.8.

Fudan-SDS Confidential - Do Not Distribute

Optional subtitle
Bagging

(Goodfellow 2016)

Batch
Normalization

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

Fudan-SDS Confidential - Do Not Distribute

Batch Normalization

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

Z =XW

Z̃ =Z � 1

m

mX

i=1

Zi,:

Ẑ =
Z̃q

✏+ 1
m

Pm
i=1 Z̃i,:

H =max{0,�Ẑ + �}

2

Before SGD step

After SGD step
“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

