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Chap 7 -

Neural Network

Main Content: 
1.	 Regularization, Error Back-
propagation; 
2.	 Loss function and Optimization; 
3.	 Feed-forward neural networks 
(Multi-layer perception, 
Convolutional neural networks);
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神经元进⼊入计算领域的视野

Walter Pitts
(1923-1969)

Warren McCulloch
(1898-1969)



引⼊入感知机（Perceptron）概念

Frank Rosenblatt 
(1923-1971)

The perceptron, a perceiving and 
recognizing automaton Project 
Para. Cornell Aeronautical 
Laboratory, 1957



神经⽹网络基础模型
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神经⽹网络基础模型



神经⽹网络的第⼀一次寒冬

Marvin Minsky
(1927-2016)

Seymour Papert
(1928-)

1969年年出版《Perceptrons》⼀一书，认为仅靠
局部连接的神经⽹网络⽆无法有效开展训练
以及很多被后来的读者们以讹传讹的观点



反向传播算法（BP）的提出

Geoffrey Hinton
(1947-)

David Rumelhart
(1942-2011)

1986年年发表在Nature上的⽂文章将BP算法⽤用于神经⽹网络
模型，极⼤大降低了了计算量量（O(n2)->O(n)）

当时的计算机普及率、计算能⼒力力也远胜60年年代



“⾸首个”重要应⽤用：⼿手写数字识别

Yann LeCun
(1960-)

到上世纪九⼗十年年代末，超过10%的美国⽀支
票识别采⽤用了了相关技术



LeNet-5

1998年年发表的Gradient-based learning applied to Document Recognition⼀一⽂文中提出了了LeNet-5
已是Convolutional Neural Network的基本框架



神经⽹网络的第⼆二次寒冬

Vladmir Vapnik
(1936-)

在1963年年发表的论⽂文中即提出Support Vector Machine的概念
在2002年年左右，不不断改进的SVM⽅方法将⼿手写数字识别的错误率降到了了0.56%
不不需要⼤大量量样本（事实上也难以⽀支撑⼤大量量样本），速度相对可以接受



卷⼟土重来的（深度）神经⽹网络

优化策略略
梯度弥散问题通过ReLU、
Dropout、Deep Residual 
Learning等⽅方法得到缓解

数据规模
真正意义上的⼤大数据出现
社会标注机制

计算能⼒力力
CPU、GPU的⻓长⾜足进步
共享权值



AlexNet



可处理理时序数据的深度学习机制

Recursive Neural Networks Long Short Term Memory



⼤大型企业不不同于以往的密切关注



开源框架

名称 基本语⾔言
是否⽀支持
多GPU 速度 应⽤用领域

TensorFlow Python、C++ 是 ★★☆ 通⽤用

Caffe C++ 是 ★★★☆ 图像分类

Torch Lua 是 ★★☆ 通⽤用

Theano Python 默认为否 ★★★☆ 通⽤用

IBM DL Platform SystemML等 是 ？ 通⽤用
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Details of the History of neural network (1)
• Pioneering work on the mathematical model of neural networks

• McCulloch and Pitts 1943;
• Include recurrent and non-recurrent (with “circles”) networks; 
• Use thresholding function as nonlinear activation; No learning

• Early works on learning neural networks
• Starting from Rosenblatt 1958; 
• Using thresholding function as nonlinear activation prevented computing derivatives with the chain 

rule, and so errors could not be propagated back to guide the computation of gradients
• Backpropagation was developed in several steps since 1960

• The key idea is to use the chain rule to calculate derivatives;
•  It was reflected in multiple works, earliest from the field of control

•  Standard backpropagation for neural networks
• Rumelhart, Hinton, and Williams, Nature 1986:  Clearly appreciated the power of backpropagation 

and demonstrated it on key tasks, and applied it to pattern recognition generally 
• In 1985, Yann LeCun independently developed a learning algorithm for three-layer networks in 

which target values were propagated, rather than derivatives. In 1986, he proved that it was 
equivalent to standard backpropagation

• Prove the universal expressive power of three-layer neural networks
• Hecht-Nielsen 1989
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• Convolutional neural network
• Introduced by Kunihiko Fukushima in 1980
• Improved by LeCun, Bottou, Bengio, and Haffner in 1998

• Deep belief net (DBN)
• Hinton, Osindero, and Tech 2006

• Auto encoder
• Hinton and Salakhutdinov 2006 (Science)

• Deep learning
• Hinton. Learning multiple layers of representations. Trends in Cognitive Sciences, 2007.
• Unsupervised multilayer pre-training + supervised fine-tuning (BP)

• Large-scale deep learning in speech recognition
• Geoff Hinton and Li Deng started this research at Microsoft Research Redmond in late 2009.
• Generative DBN pre-training was not necessary
• Success was achieved by large-scale training data + large deep neural network (DNN) with large, 

context-dependent output layers
• Unsupervised deep learning from large scale images

• Andrew Ng et al. 2011
• Unsupervised feature learning
• 16000 CPUs

• Large-scale supervised deep learning in ImageNet image classification
• Krizhevsky, Sutskever, and Hinton 2012
• Supervised learning with convolutional neural network
• No unsupervised pre-training



Neural Network 
in a Nut Shell
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(Goodfellow 2016)

Representations MatterCHAPTER 1. INTRODUCTION
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Figure 1.1: Example of different representations: suppose we want to separate two
categories of data by drawing a line between them in a scatterplot. In the plot on the left,
we represent some data using Cartesian coordinates, and the task is impossible. In the plot
on the right, we represent the data with polar coordinates and the task becomes simple to
solve with a vertical line. Figure produced in collaboration with David Warde-Farley.

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations
often result in much better performance than can be obtained with hand-designed
representations. They also allow AI systems to rapidly adapt to new tasks, with
minimal human intervention. A representation learning algorithm can discover a
good set of features for a simple task in minutes, or a complex task in hours to
months. Manually designing features for a complex task requires a great deal of
human time and effort; it can take decades for an entire community of researchers.

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function that
converts the input data into a different representation, and a decoder function
that converts the new representation back into the original format. Autoencoders
are trained to preserve as much information as possible when an input is run
through the encoder and then the decoder, but are also trained to make the new
representation have various nice properties. Different kinds of autoencoders aim to
achieve different kinds of properties.

When designing features or algorithms for learning features, our goal is usually
to separate the factors of variation that explain the observed data. In this
context, we use the word “factors” simply to refer to separate sources of influence;
the factors are usually not combined by multiplication. Such factors are often not
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Depth: Repeated 
Composition

CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Computational GraphsCHAPTER 1. INTRODUCTION
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Figure 1.3: Illustration of computational graphs mapping an input to an output where
each node performs an operation. Depth is the length of the longest path from input to
output but depends on the definition of what constitutes a possible computational step.
The computation depicted in these graphs is the output of a logistic regression model,
�(wT x), where � is the logistic sigmoid function. If we use addition, multiplication and
logistic sigmoids as the elements of our computer language, then this model has depth
three. If we view logistic regression as an element itself, then this model has depth one.

instructions can refer back to the results of earlier instructions. According to this
view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also stores
state information that helps to execute a program that can make sense of the input.
This state information could be analogous to a counter or pointer in a traditional
computer program. It has nothing to do with the content of the input specifically,
but it helps the model to organize its processing.

There are two main ways of measuring the depth of a model. The first view is
based on the number of sequential instructions that must be executed to evaluate
the architecture. We can think of this as the length of the longest path through
a flow chart that describes how to compute each of the model’s outputs given
its inputs. Just as two equivalent computer programs will have different lengths
depending on which language the program is written in, the same function may
be drawn as a flowchart with different depths depending on which functions we
allow to be used as individual steps in the flowchart. Figure 1.3 illustrates how this
choice of language can give two different measurements for the same architecture.

Another approach, used by deep probabilistic models, regards the depth of a
model as being not the depth of the computational graph but the depth of the
graph describing how concepts are related to each other. In this case, the depth

7
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Machine Learning and AI

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.
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Learning Multiple 
Components

CHAPTER 1. INTRODUCTION

Input
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Classic
machine
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Deep
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Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each
other within different AI disciplines. Shaded boxes indicate components that are able to
learn from data.
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Historical Waves

CHAPTER 1. INTRODUCTION
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Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s–1960s, with the development of theories
of biological learning (McCulloch and Pitts, 1943; Hebb, 1949) and implementations of
the first models such as the perceptron (Rosenblatt, 1958) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980–1995 period,
with back-propagation (Rumelhart et al., 1986a) to train a neural network with one or two
hidden layers. The current and third wave, deep learning, started around 2006 (Hinton
et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a), and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.
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Historical Trends: Growing Datasets
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in figure 1.9) of scans
of handwritten numbers (LeCun et al., 1998b). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer et al.,
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al., 2014a), and the Sports-1M dataset (Karpathy et al., 2014). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown et al., 1990) and the WMT 2014 English to French
dataset (Schwenk, 2014) are typically far ahead of other dataset sizes.
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The MNIST Dataset
CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0–9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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Connections per Neuron
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from Wikipedia (2015).

1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)

10. GoogLeNet (Szegedy et al., 2014a)
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Number of Neurons
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from Wikipedia (2015).

1. Perceptron (Rosenblatt, 1958, 1962)

2. Adaptive linear element (Widrow and Hoff, 1960)

3. Neocognitron (Fukushima, 1980)

4. Early back-propagation network (Rumelhart et al., 1986b)

5. Recurrent neural network for speech recognition (Robinson and Fallside, 1991)

6. Multilayer perceptron for speech recognition (Bengio et al., 1991)

7. Mean field sigmoid belief network (Saul et al., 1996)

8. LeNet-5 (LeCun et al., 1998b)

9. Echo state network (Jaeger and Haas, 2004)

10. Deep belief network (Hinton et al., 2006)

11. GPU-accelerated convolutional network (Chellapilla et al., 2006)

12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

13. GPU-accelerated deep belief network (Raina et al., 2009)

14. Unsupervised convolutional network (Jarrett et al., 2009)

15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

16. OMP-1 network (Coates and Ng, 2011)

17. Distributed autoencoder (Le et al., 2012)

18. Multi-GPU convolutional network (Krizhevsky et al., 2012)

19. COTS HPC unsupervised convolutional network (Coates et al., 2013)

20. GoogLeNet (Szegedy et al., 2014a)
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Solving Object Recognition

CHAPTER 1. INTRODUCTION
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet
Large Scale Visual Recognition Challenge, they have consistently won the competition
every year, and yielded lower and lower error rates each time. Data from Russakovsky
et al. (2014b) and He et al. (2015).
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Optional subtitle
Biological Background
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Neural Network  
In General
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Neural Network
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Optional subtitle
Local Computation At Each Unit
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Optional subtitle
Deep Neural Network
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Optional subtitle
Activation Functions

• Applied on the hidden units 

• Achieve nonlinearity 

• Popular activation functions 
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More Activation functions
Popular choice of f (·)
• Sigmoid function

• Tanh function (shift the center of Sigmoid to the origin)

• Hard thanh

• Rectified linear unit (ReLU)

• Softplus: smooth version of ReLU

• Softmax: mostly used as output non-linearrity for predicting discrete probabilities

• Maxout: it generalizes the rectifier assuming there are multiple netactivations
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Optional subtitle
Reading Material — “Recent Advances in Convolutional Neural Networks”

https://arxiv.org/pdf/1512.07108.pdf 

https://arxiv.org/pdf/1512.07108.pdf
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Optional subtitle
Loss Functions



Fudan-SDS Confidential  -  Do Not Distribute

Neural Network Prediction



Fudan-SDS Confidential  -  Do Not Distribute

Optional subtitle
Neural Network Prediction
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Optional subtitle
Neural Network Prediction
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Optional subtitle
Neural Network Prediction
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Neural Network Training
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Optional subtitle
Neural Network Training
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Optional subtitle
Pretraining

• A better initialization strategy of weight parameters 

• Based on Restricted Boltzmann Machine 

• An auto-encoder model 

• Unsupervised 

• Layer-wise, greedy 

• Useful when training data is limited 

• Not necessary when training data is rich
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Multilayer Perceptrons (MLPs) are universal approximators.

• MLPs are very flexible models: they can approximate any smooth input-output 

transformation. Really?!!
• Most widely used pattern recognition models (such as SVM, boosting, and KNN) can be 

approximated as neural networks with one or two hidden layers. They are called models 
with shallow architectures.

• Shallow models divide the feature space into regions and match templates in local regions. 
O(N) parameters are needed to represent N regions.

• Deep architecture: the number of hidden nodes can be reduced exponentially with more 
layers for certain problems. (1000-Layer ResNet)
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Optional subtitle
Multilayer Perceptrons (MLPs) are universal approximators

An MLP with one hidden layer can approximate any smooth function to any desired accuracy, 

subject to a sufficient number of hidden nodes. [1] 

[1] K. Hornik, M.Stinchcombe, and H.White. Multilayer feedforward networks are universal 

approximations. Neural Networks, 1989. 

That’s a very interesting result:  neural-like architectures composed of simple units (linear 

summation and squashing sigmoidal transfer functions), organised in layers with at least a hidden 

layer are what we need to model arbitrary smooth input-output transformations. 
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Optional subtitle
Expressive power of a three-layer neural network



Convolutional 
Neural 

Network(CNN)
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LeNet-5

1998年年发表的Gradient-based learning applied to Document Recognition⼀一⽂文中提出了了LeNet-5
已是Convolutional Neural Network的基本框架
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Optional subtitle
Local connectivity
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Convolution
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Optional subtitle
Convolution
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Optional subtitle
Convolution
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Optional subtitle
Convolution: In Practice
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Convolution: Summary
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Optional subtitle
Convolution: Problem
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Optional subtitle
Convolution: Problem
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Convolutional Layers
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Optional subtitle
Stacking Convolutional Layers
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Optional subtitle
Pooling Layers
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Optional subtitle
Pooling Layers
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Optional subtitle
Nonlinearity

Slide courtesy, Yan Lecun
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Optional subtitle
Convolutional Networks: 1989
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Optional subtitle
Convolutional Nets: 2012
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Optional subtitle
Convolutional Nets: 2014
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Training CNN: Use GPU
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Optional subtitle
Training CNN: depth cares!
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Optional subtitle
Training CNN: Huge model needs more data!
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Optional subtitle
Training CNN: highly non-convex objective
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Optional subtitle
Training CNN: avoid overfitting
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Optional subtitle
Visualize and Understand CNN
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Optional subtitle
Visualize and Understand CNN
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Optional subtitle
Limitations
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Optional subtitle
Summary
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Optional subtitle
Summary
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Optional subtitle
Further reading

• Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks 
• (http://karpathy.github.io/2015/05/21/rnn-effectiveness) 

• Recurrent Neural Networks Tutorial  
• (http://www.wildml.com/2015/09/recurrent-neural-networkstutorial-part-1-introduction-to-rnns) 

http://ufldl.stanford.edu/wiki/index.php/UFLDL教程 

http://www.robots.ox.ac.uk/~vgg/practicals/cnn/
http://cs231n.github.io/convolutional-networks/

http://www.wildml.com/2015/09/recurrent-neural-networkstutorial-part-1-introduction-to-rnns
http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/
http://cs231n.github.io/convolutional-networks/
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AI的产⽣生与发展

    1.  孕育期（1943年年—1955年年） 
1943年年Warren McCulloch 和Walter Pitts:⼈人⼯工神经元模型(MP model)

1946年年美国⼈人⽑毛奇莱(Mauchly)和艾克特(Eckert):世界上第⼀一台电⼦子计算机ENIAC 

1945年年冯诺依曼(John Von Neumann): 冯诺依曼结构。

1948年年维纳(N.Wiener）: 创⽴立了了控制论。控制论向⼈人⼯工智能的渗透，形成了了⾏行行为主义学派。

1951年年Marvin Minsky 和Dean Edmonds:神经元⽹网络计算机

1950年年Alan Turing: Computer Machinery and Intelligence 
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AI的产⽣生与发展

2. AI的诞⽣（1956年） 
AI诞⽣生于⼀一次历史性的聚会
时间：1956年年夏季
地点：达特莫斯 (Dartmouth) ⼤大学
⽬目的：为使计算机变得更更“聪明” ，或者说使计算机具有智能
发起⼈人：
      ⻨麦卡锡(J.McCarthy） ，Dartmouth的年年轻数学家、计算机专家，后为MIT教授
      明斯基(M.L.Minsky），哈佛⼤大学数学家、神经学家，后为MIT教授
      洛洛切斯特(N.Lochester)， IBM公司信息中⼼心负责⼈人
      ⾹香农(C.E.Shannon)，⻉贝尔实验室信息部数学研究员
参加⼈人：
      莫尔(T.more)、塞缪尔(A.L.Samuel)， IBM公司
      塞尔夫⾥里里奇(O.Selfridge)、索罗蒙夫(R.Solomonff) ， MIT 
      纽厄尔(A.Newell)，兰德(RAND)公司
      ⻄西蒙(H.A.Simon)，卡内基(Carnagie)⼯工科⼤大学
会议结果：
     由⻨麦卡锡提议正式采⽤用了了“Artificial Intelligence”这⼀一术语
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⼈人⼯工智能三⼤大学派

1956年年,  美国的达特茅斯
历史意义的会议，标志着⼈人⼯工智能的正式诞⽣生。 
McCarthy——“⼈人⼯工智能之⽗父”

符号主义（以数理理逻辑和知识为核⼼心）
联结主义（如⼈人⼯工神经⽹网络）
⾏行行为主义（控制论等）
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Hi Serge, 
  
We decided to withdraw our paper #[ID no.] from CVPR “[Paper Title]” by [Author Name] et al. 
We posted it on ArXiv: http://arxiv.org/ [ Paper ID] . 
  
We are withdrawing it for three reasons: 1) the scores are so low, and the reviews so ridiculous, that I don’t know how to begin writing a rebuttal without insulting the reviewers;  
2) we prefer to submit the paper to ICML where it might be better received; 
 3) with all the fuss I made, leaving the paper in would have looked like I might have tried to bully the program committee into giving it special treatment. 
  
Getting papers about feature learning accepted at vision conference has always been a struggle, and I’ve had more than my share of bad reviews over the years. Thankfully, quite a few of my papers were 
rescued by area chairs. 
  
This time though, the reviewers were particularly clueless, or negatively biased, or both. I was very sure that this paper was going to get good reviews because: 1) it has two simple and generally 
applicable ideas for segmentation (“purity tree” and “optimal cover”); 2) it uses no hand-crafted features (it’s all learned all the way through. Incredibly, this was seen as a negative point by the reviewers!); 
3) it beats all published results on 3 standard datasets for scene parsing; 4) it’s an order of magnitude faster than the competing methods. 
  
If that is not enough to get good reviews, I just don’t know what is. 
  
So, I’m giving up on submitting to computer vision conferences altogether.  CV reviewers are just too likely to be clueless or hostile towards our brand of methods. Submitting our papers is just a waste of 
everyone’s time (and incredibly demoralizing to my lab members) 
  
I might come back in a few years, if at least two things change: 
- Enough people in CV become interested in feature learning that the  probability of getting a non-clueless and non-hostile reviewer is more  than 50% (hopefully [Computer Vision Researcher]‘s tutorial on 
the topic at CVPR will have some positive effect). 
- CV conference proceedings become open access. 
  
We intent to resubmit the paper to ICML, where we hope that it will fall in the hands of more informed and less negatively biased reviewers (not that ML reviewers are generally more informed or less 
biased, but they are just more informed about our kind of stuff). Regardless, I actually have a keynote talk at [Machine Learning Conference], where I’ll be talking about the results in this paper. 
  
Be assured that I am not blaming any of this on you as the CVPR program chair. I know you are doing your best within the traditional framework of CVPR. 
  
I may also submit again to CV conferences if the reviewing process is fundamentally reformed so that papers are published before they get reviewed. 
  
You are welcome to forward this message to whoever you want. 
  
I hope to see you at NIPS or ICML. 
  
Cheers, 
  
– [Author] 
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Editor’s note: the following is an anonymized letter from a Machine Learning researcher who decided 
to withdraw his submission from CVPR 2012.  The submission received ratings of “Definitely Reject,” 
“Borderline” and “Weakly Reject.”  The letter and the paper reviews are posted here with his 

Question  

Please briefly describe the paper’s contributions, and list its positive and 
negative points.

This paper presents 
a method for scene 
parsing 

Overall Rating Definitely Reject

Please explain your rating. If the paper is so unclear that it should be rejected, 
please explain that. If the paper is not novel please explain, citing the work 
that makes it so. You should take into account whether this paper is of wide 

The key contribution 
of the paper is the 
method for purity 

Additional comments to author(s)
The authors may 
want to consider 
trying Kolmogorov’s 

Question  

Please briefly describe the paper’s contributions, and list its 
positive and negative points.

The paper addresses the problem of 
semantic segmentation, where 
every pixel in an image is assigned 

Overall Rating Borderline

Please explain your rating. If the paper is so unclear that it 
should be rejected, please explain that. If the paper is not 
novel please explain, citing the work that makes it so. You 

One of the strongest points of the 
paper is that is presents an 
interesting framework for the scene 
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