Introduction to Statistical Learning and Machine Learning

Chap 5 \＆Chap6－SVM and Kernel Methods

Yanwei Fu
School of Data Science，Fudan University

（1）Recap of SVM and how to do the optimisation of SVM
（2）Advanced issues of Dual form and Kernels of SVM
（3）Appendix－Practical Issues in Machine Learning Experiments

SVM in a Nutshell

FIGURE 12．1．Support vector classifiers．The left panel shows the separable case．The decision boundary is the solid line，while broken lines bound the shaded maximal margin of width $2 M=2 /\|\beta\|$ ．The right panel shows the nonseparable （overlap）case．The points labeled ξ_{j}^{*} are on the wrong side of their margin by an amount $\xi_{j}^{*}=M \xi_{j}$ ；points on the correct side have $\xi_{j}^{*}=0$ ．The margin is maximized subject to a total budget $\sum \xi_{i} \leq$ constant．Hence $\sum \xi_{j}^{*}$ is the total distance of points on the wrong side of their margin．

Different Forms of SVM（seperated cases）

$$
\begin{align*}
& \max _{\beta, \beta_{0},\|\beta\|_{2}=1} M \\
& \text { s.t. } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geqslant M, \quad i=1, \cdots, n \tag{1}
\end{align*}
$$

which is equivalent to

$$
\begin{aligned}
& \min \|\beta\|_{2} \\
& \text { s.t. } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geqq 1, \quad i=1, \cdots, n
\end{aligned}
$$

A natural way to modify the constraint in $\mathrm{Eq}(1)$ is by introducing the slack variable $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ ：

$$
y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geqslant M\left(1-\xi_{i}\right)
$$

$\forall i, \xi_{i} \geqslant 0, \sum_{i} \xi_{i} \leqslant \mathrm{constant}$
Remark：$M \sum_{i} \xi_{i}$ measures the total amount distance of points on the wrong side of their margin．

$$
\text { 三 } \ddagger \text { Qल }
$$

Different Forms of SVM（non－seperatable cases）

$$
\begin{align*}
& \min \|\beta\|_{2}^{2} \\
& \quad \text { s.t. } y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geqslant 1-\xi_{i}, \quad i=1, \cdots, n \tag{2}\\
& \xi_{i} \geqslant 0, \sum_{i} \xi_{i} \leqslant \text { constant } \\
& \min \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geqslant 1-\xi_{i}, \quad i=1, \cdots, n, \xi_{i} \geqslant 0 \tag{3}\\
& \min \sum_{i=1}^{n}\left[1-y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)\right]_{+}+\frac{\lambda}{2}\|\beta\|_{2}^{2} \tag{4}
\end{align*}
$$

where x_{+}indicates the positive part of x ．If $\lambda=c / 2$ ，then $\mathrm{Eq}(3)$ and $\mathrm{Eq}(4)$ are equivalent．

Introduce＂slack＂variables

$$
\xi_{i} \geq 0
$$

－for $0<\xi \leq 1$ point is between margin and correct side of hyper－ plane．This is a margin violation
－for $\xi>1$ point is misclassified

Optimization

Learning an SVM has been formulated as a constrained optimization prob－ lem over \mathbf{w} and ξ

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, \xi_{i} \in \mathbb{R}^{+}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \xi_{i} \text { subject to } y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \text { for } i=1 \ldots N
$$

The constraint $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}$ ，can be written more concisely as

$$
y_{i} f\left(\mathbf{x}_{i}\right) \geq 1-\xi_{i}
$$

which，together with $\xi_{i} \geq 0$ ，is equivalent to

$$
\xi_{i}=\max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

Hence the learning problem is equivalent to the unconstrained optimiza－ tion problem over w

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \underbrace{\|\mathbf{w}\|^{2}}_{\text {regularization }}+C \sum_{i}^{N} \underbrace{\max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right.}_{\text {loss function }})
$$

Loss function

Points are in three categories：
1．$y_{i} f\left(x_{i}\right)>1$
Point is outside margin．
No contribution to loss
2．$y_{i} f\left(x_{i}\right)=1$
Point is on margin．
No contribution to loss．
As in hard margin case．
3．$y_{i} f\left(x_{i}\right)<1$
Point violates margin constraint．
Contributes to loss

Loss functions

- SVM uses "hinge" loss max $\left(0,1-y_{i} f\left(x_{i}\right)\right)$
- an approximation to the 0-1 loss

How to deal with imbalanced data?

- In many practical applications we may have imbalanced data sets
- We may want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective does the trick!

$$
\min _{w, b} \frac{1}{2}\|w\|_{2}^{2}+\frac{C}{N_{+}} \sum_{j: y_{j}=+1} \xi_{j}+\frac{C}{N_{-}} \sum_{j: y_{j}=-1} \xi_{j}
$$

Class-specific weighting of the slack variables

Constrained optimization

Constrained optimization

$$
\begin{array}{lc}
\min _{x} \quad x^{2} \\
\text { s.t. } \quad x \geq b
\end{array}
$$

How do we solve with constraints？
\rightarrow Lagrange Multipliers！！！

Optimization continued

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|^{2}
$$

－Does this cost function have a unique solution？
－Does the solution depend on the starting point of an iterative optimization algorithm（such as gradient descent）？

If the cost function is convex，then a locally optimal point is globally optimal（provided the optimization is over a convex set，which it is in our case）

Convex Set

contains the line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

convex

not convex

not convex

Basic examples

Affine set：solution set of linear equations $A x=b$
Halfspace：solution of one linear inequality $a^{T} x \leq b(a \neq 0)$
Polyhedron：solution of finitely many linear inequalities $A x \leq b$
Ellipsoid：solution of positive definite quadratic inequality

$$
\left(x-x_{\mathrm{c}}\right)^{T} A\left(x-x_{\mathrm{c}}\right) \leq 1 \quad(A \text { positive definite })
$$

Norm ball：solution of $\|x\| \leq R$（for any norm）
Positive semidefinite cone： $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$
the intersection of any number of convex sets is convex

Convex functions

D - a domain in \mathbb{R}^{n}.

A convex function $f: D \rightarrow \mathbb{R}$ is one that satisfies, for any x_{0} and x_{1} in D :

$$
f\left((1-\alpha) \mathrm{x}_{0}+\alpha \mathrm{x}_{1}\right) \leq(1-\alpha) f\left(\mathrm{x}_{0}\right)+\alpha f\left(\mathrm{x}_{1}\right) .
$$

Line joining ($\mathrm{x}_{0}, f\left(\mathrm{x}_{0}\right)$) and ($\mathrm{x}_{1}, f\left(\mathrm{x}_{1}\right)$) lies
above the function graph.

Convex function examples

A non－negative sum of convex functions is convex

More examples

－linear and affine functions are convex and concave
－ $\exp x,-\log x, x \log x$ are convex
－x^{α} is convex for $x>0$ and $\alpha \geq 1$ or $\alpha \leq 0 ;|x|^{\alpha}$ is convex for $\alpha \geq 1$
－norms are convex
－quadratic－over－linear function $x^{T} x / t$ is convex in x, t for $t>0$
－geometric mean $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}$ is concave for $x \geq 0$
－ $\log \operatorname{det} X$ is concave on set of positive definite matrices
－ $\log \left(e^{x_{1}}+\cdots e^{x_{n}}\right)$ is convex

As for SVM，we have ．．．

SVM

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|^{2} \quad \text { convex }
$$

Gradient (or steepest) descent algorithm for SVM

To minimize a cost function $\mathcal{C}(\mathbf{w})$ use the iterative update

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \nabla_{\mathbf{w}} \mathcal{C}\left(\mathbf{w}_{t}\right)
$$

where η is the learning rate.
First, rewrite the optimization problem as an average

$$
\begin{aligned}
\min _{\mathbf{w}} \mathcal{C}(\mathbf{w}) & =\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\frac{1}{N} \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right) \\
& =\frac{1}{N} \sum_{i}^{N}\left(\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)\right)
\end{aligned}
$$

(with $\lambda=2 /(N C)$ up to an overall scale of the problem) and $f(\mathrm{x})=\mathrm{w}^{\top} \mathbf{x}+b$

Because the hinge loss is not differentiable, a sub-gradient is computed

Subgradient of a function

g is a subgradient of f（not necessarily convex）at x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

（ $\Longleftrightarrow(g,-1)$ supports epi f at $(x, f(x)))$

$$
f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right) \underbrace{}_{x_{1}} \int_{x_{2}}^{f(x)} \begin{array}{r}
\\
f\left(x_{2}\right)+g_{2}^{T}\left(x-x_{2}\right) \\
f\left(x_{2}\right)+g_{3}^{T}\left(x-x_{2}\right)
\end{array}
$$

g_{2}, g_{3} are subgradients at $x_{2} ; g_{1}$ is a subgradient at x_{1}

Prof．S．Boyd，EE392o，Stanford University

Sub－gradient for hinge loss

$$
\mathcal{L}\left(\mathbf{x}_{i}, y_{i} ; \mathbf{w}\right)=\max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right) \quad f\left(\mathbf{x}_{i}\right)=\mathbf{w}^{\top} \mathbf{x}_{i}+b
$$

Sub－gradient descent algorithm for SVM

$$
\mathcal{C}(\mathrm{w})=\frac{1}{N} \sum_{i}^{N}\left(\frac{\lambda}{2}\|\mathrm{w}\|^{2}+\mathcal{L}\left(\mathrm{x}_{i}, y_{i} ; \mathrm{w}\right)\right)
$$

The iterative update is

$$
\begin{aligned}
\mathbf{w}_{t+1} & \leftarrow \mathbf{w}_{t}-\eta \nabla_{\mathbf{w}_{t}} \mathcal{C}\left(\mathbf{w}_{t}\right) \\
& \leftarrow \mathbf{w}_{t}-\eta \frac{1}{N} \sum_{i}^{N}\left(\lambda \mathbf{w}_{t}+\nabla_{\mathbf{w}} \mathcal{L}\left(\mathbf{x}_{i}, y_{i} ; \mathbf{w}_{t}\right)\right)
\end{aligned}
$$

where η is the learning rate．

Then each iteration t involves cycling through the training data with the updates：

$$
\begin{aligned}
\mathbf{w}_{t+1} & \leftarrow \mathbf{w}_{t}-\eta\left(\lambda \mathbf{w}_{t}-y_{i} \mathbf{x}_{i}\right) & & \text { if } y_{i} f\left(\mathbf{x}_{i}\right)<1 \\
& \leftarrow \mathbf{w}_{t}-\eta \lambda \mathbf{w}_{t} & & \text { otherwise }
\end{aligned}
$$

In the Pegasos algorithm the learning rate is set at $\eta_{t}=\frac{1}{\lambda t}$

Pegasos - Stochastic Gradient Descent Algorithm

Randomly sample from the training data

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (ICML 2007)

Advanced issues of Dual form and Kernels of SVM
Detailed duality，please refer to Page 215 －229，（Chap 5），Stephen Byod et al．＂Convex Optimization＂2004，Cambridge University Press

Dual Form of SVM

- We have seen that for an SVM learning a linear classifier

$$
f(x)=\mathbf{w}^{\top} \mathbf{x}+b
$$

is formulated as solving an optimization problem over \mathbf{w} :

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

- This quadratic optimization problem is known as the primal problem.
- Instead, the SVM can be formulated to learn a linear classifier

$$
f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

by solving an optimization problem over α_{i}.

- This is know as the dual problem, and we will look at the advantages of this formulation.

Sketch derivation of dual form

The Representer Theorem states that the solution w can always be written as a linear combination of the training data：

$$
\mathbf{w}=\sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j}
$$

Now，substitute for \mathbf{w} in $f(x)=\mathbf{w}^{\top} \mathbf{x}+b$

$$
f(x)=\left(\sum_{j=1}^{N} \alpha_{j} y_{j} \mathbf{x}_{j}\right){ }^{\top} \mathbf{x}+\underset{\tau \in \in t}{ } b=\sum_{j=1}^{N} \alpha_{j} y_{j}\left(\mathbf{x}_{j}^{\top} \mathbf{x}\right)+b
$$

and for \mathbf{w} in the cost function $\min _{\mathbf{w}}\|\mathbf{w}\|^{2}$ subject to $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i$

$$
\|\mathbf{w}\|^{2}=\left\{\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}\right\} \top\left\{\sum_{k} \alpha_{k} y_{k} \mathbf{x}_{k}\right\}=\sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{k}\right)
$$

Hence，an equivalent optimization problem is over α_{j}

$$
\min _{\alpha_{j}} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{k}\right) \text { subject to } y_{i}\left(\sum_{j=1}^{N} \alpha_{j} y_{j}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{i}\right)+b\right) \geq 1, \forall i
$$

and a few more steps are required to complete the derivation．

Primal and dual formulations (1)

N is number of training points, and d is dimension of feature vector \mathbf{x}.
Primal problem: for $\mathbf{w} \in \mathbb{R}^{d}$

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

Dual problem: for $\boldsymbol{\alpha} \in \mathbb{R}^{N}$ (stated without proof):
$\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k}\left(\mathbf{x}_{j}^{\top} \mathbf{x}_{k}\right)$ subject to $0 \leq \alpha_{i} \leq C$ for $\forall i$, and $\sum_{i} \alpha_{i} y_{i}=0$

- Need to learn d parameters for primal, and N for dual
- If $N \ll d$ then more efficient to solve for α than \mathbf{w}
- Dual form only involves $\left(\mathrm{x}_{j}{ }^{\top} \mathbf{x}_{k}\right)$. We will return to why this is an advantage when we look at kernels.

Primal and dual formulations (2)

Primal version of classifier:

$$
f(\mathrm{x})=\mathrm{w}^{\top} \mathbf{x}+b
$$

Dual version of classifier:

$$
f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

At first sight the dual form appears to have the disadvantage of a K-NN classifier - it requires the training data points \mathbf{x}_{i}. However, many of the α_{i} 's are zero. The ones that are non-zero define the support vectors \mathbf{x}_{i}.

OK！Let＇s prove it by Lagrange multipliers．

Lagrange multipliers－Dual variables

Why is this equivalent？
－min is fighting max！
$\mathrm{x}<\mathrm{b} \rightarrow(\mathrm{x}-\mathrm{b})<0 \rightarrow \max _{\alpha}-\alpha(\mathrm{x}-\mathrm{b})=\infty$
－min won＇t let this happen！
$\mathrm{x}>\mathrm{b}, \alpha \geq 0 \rightarrow(\mathrm{x}-\mathrm{b})>0 \rightarrow \max _{\alpha}-\alpha(\mathrm{x}-\mathrm{b})=0, \alpha^{*}=0$
－min is cool with 0 ，and $\mathrm{L}(\mathrm{x}, \alpha)=\mathrm{x}^{2}$（original objective）
$\mathrm{x}=\mathrm{b} \rightarrow \alpha$ can be anything，and $\mathrm{L}(\mathrm{x}, \alpha)=\mathrm{x}^{2}$（original objective）
The min on the outside forces max to behave，so constraints will be satisfied．

Dual SVM derivation（1）－the linearly separable case

Original optimization problem：

$$
\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1, \forall j
$$

Lagrangian：

$$
\operatorname{minimize}_{\mathbf{w}, b} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}
$$

$$
\begin{aligned}
& L(\mathbf{w}, \alpha)=\frac{1}{2} \mathbf{w} \cdot \mathbf{w}-\sum_{j} \alpha_{j}\left[\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j}-1\right] \\
& \alpha_{j} \geq 0, \forall j
\end{aligned}
$$

Our goal now is to solve： $\min _{\vec{w}, b} \max _{\vec{\alpha} \geq 0} L(\vec{w}, \vec{\alpha})$

Dual SVM derivation (2) - the linearly separable case

(Primal) $\min _{\vec{w}, b} \max _{\vec{\alpha} \geq 0} \frac{1}{2}\|\vec{w}\|^{2}-\sum_{j} \alpha_{j}\left[\left(\vec{w} \cdot \vec{x}_{j}+b\right) y_{j}-1\right]$
(Dual) $\quad \max _{\vec{\alpha} \geq 0} \min _{\vec{w}, b} \frac{1}{2}\|\vec{w}\|^{2}-\sum_{j} \alpha_{j}\left[\left(\vec{w} \cdot \vec{x}_{j}+b\right) y_{j}-1\right]$

> Slater's condition from convex optimization guarantees that these two optimization problems are equivalent!

Dual SVM derivation（3）－the linearly separable case

$$
\text { (Dual) } \quad \max _{\vec{\alpha} \geq 0} \min _{\vec{w}, b} \frac{1}{2}\|\vec{w}\|^{2}-\sum_{j} \alpha_{j}\left[\left(\vec{w} \cdot \vec{x}_{j}+b\right) y_{j}-1\right]
$$

Can solve for optimal \mathbf{w}, b as function of α ：

$$
\begin{array}{ll}
\frac{\partial L}{\partial w}=w-\sum_{j} \alpha_{j} y_{j} x_{j} & \rightarrow \quad \mathbf{w}=\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \\
\frac{\partial L}{\partial b}=-\sum_{j} \alpha_{j} y_{j} & \rightarrow \quad \sum_{j} \alpha_{j} y_{j}=0
\end{array}
$$

Substituting these values back in（and simplifying），we obtain：

Dual SVM derivation (3) - the linearly separable case

$$
\text { (Dual) } \quad \max _{\vec{\alpha} \geq 0} \min _{\vec{w}, b} \frac{1}{2}\|\vec{w}\|^{2}-\sum_{j} \alpha_{j}\left[\left(\vec{w} \cdot \vec{x}_{j}+b\right) y_{j}-1\right]
$$

Can solve for optimal \mathbf{w}, b as function of α :

$$
\begin{array}{ll}
\frac{\partial L}{\partial w}=w-\sum_{j} \alpha_{j} y_{j} x_{j} & \rightarrow \quad \mathbf{w}=\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \\
\frac{\partial L}{\partial b}=-\sum_{j} \alpha_{j} y_{j} & \rightarrow \quad \sum_{j} \alpha_{j} y_{j}=0
\end{array}
$$

Substituting these values back in (and simplifying), we obtain:

$$
\text { (Dual) } \max _{\vec{\alpha} \geq 0, \sum_{j} \alpha_{j} y_{j}=0} \sum_{j} \alpha_{j}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\vec{x}_{i} \cdot \vec{x}_{j}\right)
$$

So, in dual formulation we will solve for α directly!

- $\quad \mathbf{w}$ and b are computed from α (if needed)

Dual SVM derivation（3）－the linearly separable case

Lagrangian：

$$
\begin{aligned}
& L(\mathbf{w}, \alpha)=\frac{1}{2} \mathbf{w} \cdot \mathbf{w}-\sum_{j} \alpha_{j}\left[\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j}-1\right] \\
& \alpha_{j} \geq 0, \forall j
\end{aligned}
$$

$\alpha_{\mathrm{j}}>0$ for some j implies constraint is tight．We use this to obtain b ：

$$
\begin{align*}
y_{j}\left(\vec{w} \cdot \vec{x}_{j}+b\right) & =1 \tag{1}\\
y_{j} y_{j}\left(\vec{w} \cdot \vec{x}_{j}+b\right) & =y_{j} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\
& b=y_{k}-\mathbf{w} \cdot \mathbf{x}_{k} \\
& \text { for any } k \text { where } \alpha_{k}>0
\end{aligned}
$$

$$
\begin{equation*}
\left(\vec{w} \cdot \vec{x}_{j}+b\right)=y_{j} \tag{3}
\end{equation*}
$$

Handling data that is not linearly separable

 motivation for introducing the dual form of SVM

－introduce slack variables

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}, \xi_{i} \in \mathbb{R}^{+}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \xi_{i}
$$

subject to
$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}$ for $i=1 \ldots N$

－linear classifier not appropriate ？？

SVM classifiers in a transformed feature space

Learn classifier linear in \mathbf{w} for \mathbb{R}^{D} ：

$$
f(\mathrm{x})=\mathrm{w}^{\top} \Phi(\mathrm{x})+b
$$

$\Phi(\mathrm{x})$ is a feature map

Primal Classifier in transformed feature space

Classifier，with $\mathbf{w} \in \mathbb{R}^{D}$ ：

$$
f(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathrm{x})+b
$$

Learning，for $\mathbf{w} \in \mathbb{R}^{D}$

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}}\|\mathbf{w}\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

－Simply map \mathbf{x} to $\Phi(\mathbf{x})$ where data is separable
－Solve for \mathbf{w} in high dimensional space \mathbb{R}^{D}
－If $D \gg d$ then there are many more parameters to learn for w ．Can this be avoided？

Dual Classifier in transformed feature space

Classifier：

$$
\begin{aligned}
f(\mathbf{x}) & =\sum_{i}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathrm{x}+b \\
\rightarrow f(\mathrm{x}) & =\sum_{i}^{N} \alpha_{i} y_{i} \Phi\left(\mathrm{x}_{i}\right)^{\top} \Phi(\mathrm{x})+b
\end{aligned}
$$

Learning：

$$
\begin{aligned}
& \max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} \mathbf{x}_{j}^{\top} \mathbf{x}_{k} \\
\rightarrow & \max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} \Phi\left(\mathbf{x}_{j}\right)^{\top} \Phi\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

subject to

$$
0 \leq \alpha_{i} \leq C \text { for } \forall i, \text { and } \sum_{i} \alpha_{i} y_{i}=0
$$

Dual Classifier in transformed feature space

- Note, that $\Phi(\mathrm{x})$ only occurs in pairs $\Phi\left(\mathrm{x}_{j}\right)^{\top} \Phi\left(\mathrm{x}_{i}\right)$
- Once the scalar products are computed, only the N dimensional vector $\boldsymbol{\alpha}$ needs to be learnt; it is not necessary to learn in the D dimensional space, as it is for the primal
- Write $k\left(\mathrm{x}_{j}, \mathrm{x}_{i}\right)=\Phi\left(\mathrm{x}_{j}\right)^{\top} \Phi\left(\mathrm{x}_{i}\right)$. This is known as a Kernel Classifier:

$$
f(\mathrm{x})=\sum_{i}^{N} \alpha_{i} y_{i} k\left(\mathrm{x}_{i}, \mathrm{x}\right)+b
$$

Learning:

$$
\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j k} \alpha_{j} \alpha_{k} y_{j} y_{k} k\left(\mathbf{x}_{j}, \mathrm{x}_{k}\right)
$$

subject to

$$
0 \leq \alpha_{i} \leq C \text { for } \forall i \text {, and } \sum_{i} \alpha_{i} y_{i}=0
$$

Special transformations

$$
\begin{aligned}
& \Phi:\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2}
\end{array}\right) \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \begin{aligned}
\Phi(\mathbf{x})^{\top} \Phi(\mathbf{z}) & =\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)\left(\begin{array}{c}
z_{1}^{2} \\
z_{2}^{2} \\
\sqrt{2} z_{1} z_{2}
\end{array}\right) \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}
\end{aligned}
\end{aligned}
$$

Kernel Trick

－Classifier can be learnt and applied without explicitly computing $\Phi(\mathrm{x})$
－All that is required is the kernel $k(x, z)=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2}$
－Complexity of learning depends on N

Example kernels

－Linear kernels $k\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}$
－Polynomial kernels $k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\left(1+\mathrm{x}^{\top} \mathbf{x}^{\prime}\right)^{d}$ for any $d>0$
－Contains all polynomials terms up to degree d
－Gaussian kernels $k\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$ for $\sigma>0$
－Infinite dimensional feature space

SVM classifier with Gaussian kernel

$$
f(\mathbf{x})=\sum_{i}^{N} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Gaussian kernel $k\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\exp \left(-\left\|\mathrm{x}-\mathrm{x}^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$
Radial Basis Function (RBF) SVM

$$
f(\mathrm{x})=\sum_{i}^{N} \alpha_{i} y_{i} \exp \left(-\left\|\mathrm{x}-\mathrm{x}_{i}\right\|^{2} / 2 \sigma^{2}\right)+b
$$

Constructing Kernels

Checking if a given function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel can be hard．
－$k(x, \bar{x})=\tanh (1+\langle x, \bar{x}\rangle)$ ？
－$k(x, \bar{x})=\exp (-$ edit distance between two strings x and $\bar{x})$ ？
－$k(x, \bar{x})=1-\|x-\bar{x}\|^{2}$ ？
Easier：construct functions that are garanteed to be kernels：
Construct explicitly：
－any $\phi: \mathcal{X} \rightarrow \mathbb{R}^{m}$ induces a kernel $k(x, \bar{x})=\langle\phi(x), \phi(\bar{x})\rangle$ ． in particular any $f: \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, \bar{x})=f(x) f(\bar{x})$

Construction from other kernels：
－If k is a kernel and $\alpha \in \mathbb{R}^{+}$，then $k+\alpha$ and αk are kernels．
－if k_{1}, k_{2} are kernels，then $k_{1}+k_{2}$ and $k_{1} \cdot k_{2}$ are kernels．
－if k is a kernel，then $\exp (k)$ is a kernel．

Kernel algebra

a) $k(\mathbf{x}, \mathbf{v})=k_{a}(\mathbf{x}, \mathbf{v})+k_{b}(\mathbf{x}, \mathbf{v})$ feature composition
b) $k(\mathbf{x}, \mathbf{v})=f k_{a}(\mathbf{x}, \mathbf{v}), f>0$

$$
\phi(\mathbf{x})=\sqrt{f} \phi_{a}(\mathbf{x})
$$

c) $k(\mathbf{x}, \mathbf{v})=k_{a}(\mathbf{x}, \mathbf{v}) k_{b}(\mathbf{x}, \mathbf{v})$
$\phi_{m}(\mathbf{x})=\phi_{a i}(\mathbf{x}) \phi_{b j}(\mathbf{x})$
d) $k(\mathbf{x}, \mathbf{v})=\mathbf{x}^{T} A \mathbf{v}, A$ positive semi-definite
$\phi(\mathbf{x})=L^{T} \mathbf{x}$, where $A=L L^{T}$.
e) $k(\mathbf{x}, \mathbf{v})=f(\mathbf{x}) f(\mathbf{v}) k_{a}(\mathbf{x}, \mathbf{v})$
$\phi(\mathbf{x})=f(\mathbf{x}) \phi_{a}(\mathbf{x})$

Q: How would you prove that the "Gaussian kernel" is a valid kernel?
A: Expand the Euclidean norm as follows:

$$
\exp \left(-\frac{\|\vec{u}-\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right)=\exp \left(-\frac{\|\vec{u}\|_{2}^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\|\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{\vec{u} \cdot \vec{v}}{\sigma^{2}}\right)
$$

Then, apply (e) from above
The feature mapping is infinite dimensional!

To see that this is a kernel, use the Taylor series expansion of the exponential, together with repeated application of (a), (b), and (c):

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Overfitting？

－Huge feature space with kernels：should we worry about overfitting？
－SVM objective seeks a solution with large margin
－Theory says that large margin leads to good generalization．
－But everything overfits sometimes！！！
－Can control by：
－Setting C
－Choosing a better Kernel
－Varying parameters of the Kernel（width of Gaussian，etc．）

Appendix－Practical Issues in Machine Learning Experiments

Optimizing the SVM Dual（kernelized）

How to solve the QP

$$
\begin{array}{r}
\max _{\alpha^{1}, \ldots, \alpha^{n} \in \mathbb{R}}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha^{i} \alpha^{j} y^{i} y^{j} k\left(x^{i}, x^{j}\right)+\sum_{i=1}^{n} \alpha^{i} \\
\text { subject to } \sum_{i} \alpha_{i} y_{i}=0 \quad \text { and } \quad 0 \leq \alpha_{i} \leq C, \text { for } i=1, \ldots, n .
\end{array}
$$

Observations：
－Kernel matrix K（with entries $k_{i j}=k\left(x^{i}, x^{j}\right)$ ）might be too big to fit into memory．
－In the optimum，many of the α_{i} are 0 and do not contribute．
If we knew which ones，we would save a lot of work

Optimizing the SVM Dual（kernelized）

Working set training［Osuna 1997］

```
\(S=\emptyset\)
repeat
    \(\alpha \leftarrow\) solve QP with variables \(\alpha_{i}\) for \(i \in S\) and \(\alpha_{i}=0\) for \(i \notin S\)
        for \(i=1 \ldots, n\) do
            if if \(i \in S\) and \(\alpha_{i}=0\) then remove \(i\) from \(S\)
            if if \(i \notin S\) and \(\alpha_{i}\) not optimal then add \(i\) to \(S\)
        end for
    until convergence
```

Advantages：
－objective value increases monotonously
－converges to global optimum
Disadvantages：
－each step is computationally costly，since S can become large

Sequential Minimal Optimization（SMO）［Platt 1998］

1：$\alpha \leftarrow 0$
repeat
pick index i such that α_{i} is not optimal
pick index $j \neq i$ arbitrarily (usually based on some heuristic)
$\alpha_{i}, \alpha_{j} \leftarrow$ solve QP for α_{i}, α_{j} and all other α_{k} fixed
until convergence

Advantages：
－convergences monotonously to global optimum
－each step optimizes a subproblem of smallest possible size：
2 unknowns（ 1 doesn＇t work because of constraint $\sum_{i} \alpha_{i} y_{i}=0$ ）
－subproblems have a closed－form solution
Disadvantages：
－many iterations are required
－many kernel values $k\left(x^{i}, x^{j}\right)$ are computed more than once （unless K is stored as matrix）

SVMs Without Bias Term- Optimization

For optimization, the bias term is an annoyance

- In primal optimization, it often requires a different stepsize.
- In dual optimization, it is not straight-forward to recover.
- It couples the dual variables by an equality constraint: $\sum_{i} \alpha_{i} y_{i}=0$.

We can get rid of the bias by the augmentation trick.
Original:

- $f(x)=\langle w, x\rangle_{\mathbb{R}^{d}}+b, \quad$ with $w \in \mathbb{R}^{d}, b \in \mathbb{R}$.

New augmented:

- linear: $f(x)=\langle\tilde{w}, \tilde{x}\rangle_{\mathbb{R}^{d+1}}, \quad$ with $\tilde{w}=(w, b), \tilde{x}=(x, 1)$.
- generalized: $f(x)=\langle\tilde{w}, \tilde{\phi}(x)\rangle_{\tilde{\mathcal{H}}}$ with $\tilde{w}=(w, b), \tilde{\phi}(x)=(\phi(x), 1)$.
- kernelize: $\tilde{k}(x, \bar{x})=\langle\tilde{\phi}(x), \tilde{\phi}(\bar{x})\rangle_{\tilde{\mathcal{H}}}=k(x, \bar{x})+1$.

SVMs Without Bias Term－Optimization

SVM without bias term－primal optimization problem

$$
\min _{w \in \mathbb{R}^{d}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to，for $i=1, \ldots, n$ ，

$$
y^{i}\left\langle w, x^{i}\right\rangle \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0
$$

Difference：no b variable to optimize over

SVMs Without Bias Term－Optimization

SVM without bias term－primal optimization problem

$$
\min _{w \in \mathbb{R}^{d}, \xi \in \mathbb{R}^{n}} \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi^{i}
$$

subject to，for $i=1, \ldots, n$ ，

$$
y^{i}\left\langle w, x^{i}\right\rangle \geq 1-\xi^{i}, \quad \text { and } \quad \xi^{i} \geq 0
$$

Difference：no b variable to optimize over

SVM without bias term－dual optimization problem

$$
\max _{\alpha}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y^{i} y^{j} k\left(x^{i}, x^{j}\right)+\sum_{i} \alpha_{i}
$$

subject to，$\quad 0 \leq \alpha_{i} \leq C, \quad$ for $i=1, \ldots, n$ ．
Difference：no constraint $\sum_{i} y_{i} \alpha_{i}=0$ ．

Linear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent

```
\alpha\leftarrow0.
for t=1,\ldots,T do
    i\leftarrow random index (uniformly random or in epochs)
    solve QP w.r.t. }\mp@subsup{\alpha}{i}{}\mathrm{ with all }\mp@subsup{\alpha}{j}{}\mathrm{ for }j\not=i\mathrm{ fixed.
end for
return \alpha
```

Properties：
－converges monotonically to global optimum
－each subproblem has smallest possible size
Open Problem：
－how to make each step efficient？

三 \quad 引ดく

SVM Optimization in the Dual

What＇s the complexity of the update step？Derive an explicit expression：
Original problem： $\max _{\alpha \in[0, C]^{n}} \quad-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y^{i} y^{j} k\left(x^{i}, x^{j}\right)+\sum_{i} \alpha_{i}$

SVM Optimization in the Dual

What＇s the complexity of the update step？Derive an explicit expression：
Original problem： $\max _{\alpha \in[0, C]^{n}} \quad-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y^{i} y^{j} k\left(x^{i}, x^{j}\right)+\sum_{i} \alpha_{i}$
When all α_{j} except α_{i} are fixed： $\max _{\alpha_{i} \in[0, C]} F\left(\alpha_{i}\right)$ ，with

$$
\begin{aligned}
& F\left(\alpha_{i}\right)=-\frac{1}{2} \alpha_{i}^{2} k\left(x^{i}, x^{i}\right)+\alpha_{i}\left(1-y^{i} \sum_{j \neq i} \alpha_{j} y^{j} k\left(x^{i}, x^{j}\right)\right)+\text { const. } \\
& \frac{\partial}{\partial \alpha_{i}} F\left(\alpha_{i}\right)=-\alpha_{i} k\left(x^{i}, x^{i}\right)+\left(1-y^{i} \sum_{j \neq i} \alpha_{j} y^{j} k\left(x^{i}, x^{j}\right)\right)+\text { const. } \\
& \alpha_{i}^{\text {opt }}=\alpha_{i}+\frac{1-y^{i} \sum_{j=1}^{n} \alpha_{j} y^{j} k\left(x^{i}, x^{j}\right)}{k\left(x^{i}, x^{i}\right)}, \quad \alpha_{i}= \begin{cases}0 & \text { if } \alpha_{i}^{\text {opt }}<0, \\
C & \text { if } \alpha_{i}^{\text {opt }}>C, \\
\alpha_{i}^{\text {opt }} & \text { otherwise. }\end{cases}
\end{aligned}
$$

（except if $k\left(x^{i}, x^{i}\right)=0$ ，but then $k\left(x^{i}, x^{j}\right)=0$ ，so α_{i} has no influence）
Observation：each update has complexity $O(n)$ ．

（Generalized）Linear SVM Optimization in the Dual

Let $k(x, \bar{x})=\langle\phi(x), \phi(\bar{x})\rangle_{\mathbb{R}^{d}}$ for explicitly known $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$ ．

$$
\alpha_{i}^{\mathrm{opt}}=\alpha_{i}+\frac{1-y^{i} \sum_{j} \alpha_{j} y^{j} k\left(x^{i}, x^{j}\right)}{k\left(x^{i}, x^{i}\right)}
$$

remember $w=\sum_{j} \alpha_{j} y_{j} \phi\left(x^{j}\right)$

$$
=\alpha_{i}+\frac{1-y^{i}\left\langle w, \phi\left(x^{i}\right)\right\rangle}{\left\|\phi\left(x^{i}\right)\right\|^{2}},
$$

－each update takes $O(d)$ ，independent of n
－$\left\langle w, \phi\left(x^{i}\right)\right\rangle$ takes at most $O(d)$ for explicit $w \in \mathbb{R}^{d}, \phi\left(x^{i}\right) \in \mathbb{R}^{d}$
－we must also take care that w remains up to date（also at most $O(d)$ ）

(Generalized) Linear SVM Optimization in the Dual

SCDA for (Generalized) Linear SVMs [Hsieh, 2008]

```
initialize \(\alpha \leftarrow \mathbf{0}, w \leftarrow \mathbf{0}\)
for \(t=1, \ldots, T\) do
    \(i \leftarrow\) random index (uniformly random or in epochs)
    \(\delta \leftarrow \frac{1-y^{i}\left\langle w, \phi\left(x^{i}\right)\right\rangle}{\left\|\phi\left(x^{i}\right)\right\|^{2}}\)
    \(\alpha_{i} \leftarrow \begin{cases}0, & \text { if } \alpha_{i}+\delta<0, \\ C, & \text { if } \alpha_{i}+\delta>C, \\ \alpha_{i}+\delta, & \text { otherwise } .\end{cases}\)
    \(w \leftarrow w+\delta y^{i} \phi\left(x^{i}\right)\)
end for
return \(\alpha\), \(w\)
```

Properties:

- converges monotonically to global optimum
- complexity of each step is independent of n
- resembles stochastic gradient method, but automatic step size

You've trained a new predictor, $g: \mathcal{X} \rightarrow \mathcal{Y}$, and you want to tell the world how good it is. How to measure this?

Reminder:

- The average loss on the training set, $\frac{1}{\left|\mathcal{D}_{\text {trn }}\right|} \sum_{(x, y) \in \mathcal{D}_{\text {trn }}} \ell(y, g(x))$ tells us (almost) nothing about the future loss. Reporting it would be misleading as best.
- The relevant quantity is the expected risk,

$$
\mathcal{R}(g)=\mathbb{E}_{(x, y) \sim p(x, y)} \ell(y, g(x))
$$

which unfornately we cannot compute, since $p(x, y)$ is unknown.

- If we have data $\mathcal{D}_{t s t} \stackrel{i . i . d .}{\sim} p(x, y)$, we have,

$$
\frac{1}{\left|\mathcal{D}_{t s t}\right|} \sum_{(x, y) \in \mathcal{D}_{t s t}} \ell(y, g(x)) \xrightarrow{\left|\mathcal{D}_{t s t}\right| \rightarrow \infty} \mathbb{E}_{(x, y) \sim p(x, y)} \ell(y, g(x))
$$

- Problem: samples $\ell(y, g(x))$ must me independent, otherwise law of large numbers doesn't hold.
- Make sure that g is independent of $\mathcal{D}_{t s t}$.

Classifier Training (idealized)

input training data $\mathcal{D}_{\text {trn }}$
input learning procedure A
$g \leftarrow A[\mathcal{D}] \quad$ (apply A with \mathcal{D} as training set) output resulting classifier $g: \mathcal{X} \rightarrow \mathcal{Y}$

Classifier Evaluation

input trained classifier $g: \mathcal{X} \rightarrow \mathcal{Y}$
input test data $\mathcal{D}_{t s t}$
apply g to $\mathcal{D}_{t s t}$ and measure performance $R_{t s t}$ output performance estimate $R_{t s t}$

Classifier Training (idealized)

input training data $\mathcal{D}_{\text {trn }}$
input learning procedure A
$g \leftarrow A[\mathcal{D}] \quad$ (apply A with \mathcal{D} as training set)
output resulting classifier $g: \mathcal{X} \rightarrow \mathcal{Y}$

Classifier Evaluation

input trained classifier $g: \mathcal{X} \rightarrow \mathcal{Y}$
input test data $\mathcal{D}_{\text {tst }}$
apply g to $\mathcal{D}_{t s t}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$
Remark: In commercial applications, this is realistic:

- given some training set one builds a single system,
- one deploys it to the customers,
- the customers use it on their own data, and complain if disappointed In research, one typically has no customer, but only a fixed amount of data to work with, so one simulates the above protocol.

Classifier Training and Evaluation

input data \mathcal{D}
input learning method A
split $\mathcal{D}=\mathcal{D}_{t r n} \cup \dot{\mathcal{D}} \mathcal{D}_{t s t}$ disjointly
set aside $\mathcal{D}_{\text {tst }}$ to a safe place // do not look at it
$g \leftarrow A\left[\mathcal{D}_{t r n}\right] \quad / /$ learn a predictor from $\mathcal{D}_{t r n}$
apply g to $\mathcal{D}_{t s t}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$

Classifier Training and Evaluation

input data \mathcal{D}
input learning method A
split $\mathcal{D}=\mathcal{D}_{t r n} \cup \dot{\mathcal{D}} \mathcal{D}_{t s t}$ disjointly set aside $\mathcal{D}_{\text {tst }}$ to a safe place $\quad / /$ do not look at it $g \leftarrow A\left[\mathcal{D}_{\text {trn }}\right] \quad / /$ learn a predictor from $\mathcal{D}_{\text {trn }}$
apply g to $\mathcal{D}_{t s t}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$

Remark. $\mathcal{D}_{\text {tst }}$ should be as small as possible, to keep $\mathcal{D}_{\text {trn }}$ as big as possible, but large enough to be convincing.

- sometimes: $50 \% / 50 \%$ for small datasets
- more often: 80% training data, 20% test data
- for large datasets: 90% training, 10% test data.

Remark：The split because $\mathcal{D}_{\text {trn }}$ and $\mathcal{D}_{\text {tst }}$ must be absolute．
－Do not use $\mathcal{D}_{t s t}$ for anything except the very last step．
－Do not look at $\mathcal{D}_{t s t}$ ！Even if the learning algorithm doesn＇t see it， you looking at it can and will influence your model design or parameter selection（human overfitting）．
－In particular，this applies to datasets that come with predefined set of test data，such as MNIST，PASCAL VOC，ImageNet，etc．

Remark: The split because $\mathcal{D}_{\text {trn }}$ and $\mathcal{D}_{\text {tst }}$ must be absolute.

- Do not use $\mathcal{D}_{t s t}$ for anything except the very last step.
- Do not look at $\mathcal{D}_{t s t}$! Even if the learning algorithm doesn't see it, you looking at it can and will influence your model design or parameter selection (human overfitting).
- In particular, this applies to datasets that come with predefined set of test data, such as MNIST, PASCAL VOC, ImageNet, etc.

In practice we often want more: not just evaluate one classifier, but

- select the best algorithm or parameters amongst multiple ones

We simulate the classifier evaluation step during the training procedure. This needs (at least) one additional data split:

Training and Selecting between Multiple Models

input data \mathcal{D}
input set of method $\mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}$
split $\mathcal{D}=\mathcal{D}_{\text {trnval }} \cup \dot{\mathcal{D}} \mathcal{D}_{\text {tst }}$ disjointly
set aside $\mathcal{D}_{t s t}$ to a safe place (do not look at it)
split $\mathcal{D}_{\text {trnval }}=\mathcal{D}_{\text {trn }} \cup \dot{\mathcal{D}} \mathcal{D}_{\text {val }}$ disjointly
for all models $A_{i} \in \mathcal{A}$ do
$g_{i} \leftarrow A_{i}\left[\mathcal{D}_{t r n}\right]$
apply g_{i} to $\mathcal{D}_{\text {val }}$ and measure performance $E_{\text {val }}\left(A_{i}\right)$
end for
pick best performing A_{i}
(optional) $g_{i} \leftarrow A_{i}\left[\mathcal{D}_{\text {trnval }}\right] \quad / /$ retrain on larger dataset
apply g_{i} to $\mathcal{D}_{\text {tst }}$ and measure performance $R_{t s t}$
output performance estimate $R_{t s t}$
How to split? For example $1 / 3-1 / 3-1 / 3$ or $70 \%-10 \%-20 \%$.

Discussion．

－Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \checkmark$
－You select a predictor based on $E_{\text {val }}$（its performance on $\mathcal{D}_{\text {val }}$ ），only afterwards $\mathcal{D}_{\text {tst }}$ is used．$\sqrt{ }$
－ $\mathcal{D}_{t s t}$ is used to evaluate the final predictor and nothing else．

Discussion.

- Each algorithm is trained on $\mathcal{D}_{\text {trn }}$ and evaluated on disjoint $\mathcal{D}_{\text {val }} \sqrt{ }$
- You select a predictor based on $E_{\text {val }}$ (its performance on $\mathcal{D}_{\text {val }}$), only afterwards $\mathcal{D}_{\text {tst }}$ is used. $\sqrt{ }$
- $\mathcal{D}_{t s t}$ is used to evaluate the final predictor and nothing else.

Problems.

- small $\mathcal{D}_{\text {val }}$ is bad: $E_{\text {val }}$ could be bad estimate of g_{A} 's true performance, and we might pick a suboptimal method.
- large $\mathcal{D}_{\text {val }}$ is bad: $\mathcal{D}_{\text {trn }}$ is much smaller than $\mathcal{D}_{\text {trnval }}$, so the classifier learned on $\mathcal{D}_{\text {trn }}$ might be much worse than necessary.
- retraining the best model on $\mathcal{D}_{\text {trnval }}$ might overcome that, but it comes at a risk: just because a model worked well when trained on $\mathcal{D}_{\text {trn }}$, this does not mean it'll also work well when trained on $\mathcal{D}_{\text {trnval }}$.

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function ℓ
input data \mathcal{D} (trnval part only: test part set aside earlier)
for all $\left(x^{i}, y^{i}\right) \in \mathcal{D}$ do
$g^{\urcorner} \leftarrow A\left[\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}\right] \quad / / \mathcal{D}_{\text {trn }}$ is \mathcal{D} with i-th example removed
$r^{i} \leftarrow \ell\left(y^{i}, g^{\urcorner i}\left(x^{i}\right)\right) \quad / / \mathcal{D}_{\text {val }}=\left\{\left(x^{i}, y^{i}\right)\right\}$, disjoint to $\mathcal{D}_{\text {trn }}$
end for
output $R_{\text {loo }}=\frac{1}{n} \sum_{i=1}^{n} r^{i} \quad$ (average leave-one-out risk)

Properties.

- Each r^{i} is a unbiased (but noisy) estimate of the risk $\mathcal{R}\left(g^{\neg i}\right)$
- $\mathcal{D} \backslash\left\{\left(x^{i}, y^{i}\right)\right\}$ is almost the same as \mathcal{D}, so we can hope that each $g^{\neg i}$ is almost the same as $g=A[\mathcal{D}]$.
- Therefore, $R_{\text {loo }}$ can be expected a good estimate of $\mathcal{R}(g)$

Problem: slow, trains n times on $n-1$ examples instead of once on n

Compromise: use fixed number of small $\mathcal{D}_{\text {val }}$

K-fold Cross Validation (CV)

input algorithm A, loss function ℓ, data \mathcal{D} (trnval part)
split $\mathcal{D}=\dot{U}_{k=1}^{K} \mathcal{D}_{k}$ into K equal sized disjoint parts
for $k=1, \ldots, K$ do
$g^{\urcorner k} \leftarrow A\left[\mathcal{D} \backslash \mathcal{D}_{k}\right]$
$\left.r^{k} \leftarrow \frac{1}{\left|\mathcal{D}_{k}\right|} \sum_{(x, y) \in \mathcal{D}_{k}} \ell\left(y^{i}, g\right\urcorner^{k}(x)\right)$
end for
output $R_{K-\mathrm{CV}}=\frac{1}{K} \sum_{k=1}^{n} r^{k} \quad(K$-fold cross-validation risk)

Observation.

- for $K=|\mathcal{D}|$ same as leave-one-out error.
- approximately k times increase in runtime.
- most common: $k=10$ or $k=5$.

Problem: training sets overlap, so the error estimates are correlated.
Exception: $K=2$

5×2 Cross Validation (5×2-CV)

```
input algorithm \(A\), loss function \(\ell\), data \(\mathcal{D}\) (trnval part)
    for \(k=1, \ldots, 5\) do
        Split \(\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2}\)
        \(g_{1} \leftarrow A\left[\mathcal{D}_{1}\right]\),
        \(r_{1}^{k} \leftarrow\) evaluate \(g_{1}\) on \(\mathcal{D}_{2}\)
        \(g_{2} \leftarrow A\left[\mathcal{D}_{2}\right]\),
        \(r_{2}^{k} \leftarrow\) evaluate \(g_{2}\) on \(\mathcal{D}_{1}\)
        \(r^{k} \leftarrow \frac{1}{2}\left(r_{k}^{1}+r_{k}^{2}\right)\)
    end for
output \(E_{5 \times 2}=\frac{1}{5} \sum_{k=1}^{5} r^{k}\)
```


Observation.

- 5×2-CV is really the average of 5 runs of 2 -fold CV
- very easy to implement: shuffle the data and split into halfs
- within each run the training sets are disjoint and the classifiers g_{1} and g_{2} are independent

Problem: training sets are smaller than in 5 - or 10 -fold CV.

Acknowledgement

Acknowledgement
Some slides are in courtesy of the slides of C19 Machine Learning lectures by Prof．Andrew Zisserman（Oxford University）

