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SVM in a Nutshell
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Different Forms of SVM (seperated cases)

maxβ,β0,‖β‖2=1M

s.t.yi
(
xTi β + β0

)
> M, i = 1, · · · , n (1)

which is equivalent to

min ‖ β ‖2
s.t.yi

(
xTi β + β0

)
= 1, i = 1, · · · , n

A natural way to modify the constraint in Eq(1) is by introducing
the slack variable ξ = (ξ1, · · · , ξn):

yi
(
xTi β + β0

)
> M (1− ξi )

∀i , ξi > 0,
∑

i ξi 6 constant
Remark: M

∑
i ξi measures the total amount distance of points on

the wrong side of their margin.
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Different Forms of SVM (non-seperatable cases)

min ‖ β ‖22
s.t.yi

(
xTi β + β0

)
> 1− ξi , i = 1, · · · , n (2)

ξi > 0,
∑
i

ξi 6 constant

min
1

2
‖ β ‖22 +C

∑
i

ξi

s.t.yi
(
xTi β + β0

)
> 1− ξi , i = 1, · · · , n, ξi > 0 (3)

min

n∑
i=1

[
1− yi

(
xTi β + β0

)]
+

+
λ

2
‖ β ‖22 (4)

where x+ indicates the positive part of x . If λ = C/2, then Eq(3)
and Eq(4) are equivalent.
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Introduce “slack” variables
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Optimization
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Loss function
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Loss functions

• SVM uses “hinge” loss max (0, 1− yi f (xi ))

• an approximation to the 0-1 loss
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How to deal with imbalanced data?
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Constrained optimization
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Optimization continued
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Convex Set
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Basic examples
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Convex functions
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Convex function examples
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More examples
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As for SVM, we have ...
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Gradient (or steepest) descent algorithm for SVM
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Subgradient of a function
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Sub-gradient for hinge loss
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Sub-gradient descent algorithm for SVM
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Pegasos – Stochastic Gradient Descent Algorithm

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (ICML
2007)
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Advanced issues of Dual form and Kernels of SVM
Detailed duality, please refer to Page 215 – 229, (Chap 5), Stephen
Byod et al. “Convex Optimization” 2004, Cambridge University
Press
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Dual Form of SVM
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Sketch derivation of dual form
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Primal and dual formulations (1)
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Primal and dual formulations (2)
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OK! Let’s prove it by Lagrange multipliers.
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Lagrange multipliers – Dual variables
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Dual SVM derivation (1) – the linearly separable case
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Dual SVM derivation (2) – the linearly separable case
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Dual SVM derivation (3) – the linearly separable case
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Dual SVM derivation (3) – the linearly separable case

34/54



Dual SVM derivation (3) – the linearly separable case
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Handling data that is not linearly separable
motivation for introducing the dual form of SVM
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SVM classifiers in a transformed feature space
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Primal Classifier in transformed feature space
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Dual Classifier in transformed feature space

39/54



Dual Classifier in transformed feature space
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Special transformations
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Example kernels
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SVM classifier with Gaussian kernel
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Constructing KernelsConstructing Kernels

Checking if a given function k : X × X → R is a kernel can be hard.
• k(x, x̄) = tanh(1 + 〈x, x̄〉) ?
• k(x, x̄) = exp( − edit distance between two strings x and x̄ ) ?
• k(x, x̄) = 1− ‖x − x̄‖2 ?

Easier: construct functions that are garanteed to be kernels:

Construct explicitly:
• any φ : X → Rm induces a kernel k(x, x̄) = 〈φ(x), φ(x̄)〉.

in particular any f : X → R, k(x, x̄) = f (x)f (x̄)

Construction from other kernels:
• If k is a kernel and α ∈ R+, then k + α and αk are kernels.

• if k1, k2 are kernels, then k1 + k2 and k1 · k2 are kernels.

• if k is a kernel, then exp(k) is a kernel.
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Kernel algebra
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Overfitting?

• Huge feature space with kernels: should we worry about
overfitting?

• SVM objective seeks a solution with large margin
• Theory says that large margin leads to good generalization.

• But everything overfits sometimes!!!
• Can control by:

• Setting C
• Choosing a better Kernel
• Varying parameters of the Kernel (width of Gaussian, etc.)
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Appendix–Practical Issues in Machine Learning Experiments
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Optimizing the SVM Dual (kernelized)Optimizing the SVM Dual (kernelized)

How to solve the QP

max
α1,...,αn∈R

−1
2

n∑

i,j=1
αiαjyiyjk(x i , x j) +

n∑

i=1
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Observations:
• Kernel matrix K (with entries kij = k(x i , x j)) might be too big to
fit into memory.

• In the optimum, many of the αi are 0 and do not contribute.
If we knew which ones, we would save a lot of work
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Optimizing the SVM Dual (kernelized)Optimizing the SVM Dual (kernelized)

Working set training [Osuna 1997]

1: S = ∅
2: repeat
3: α← solve QP with variables αi for i ∈ S and αi = 0 for i 6∈ S
4: for i = 1 . . . ,n do
5: if if i ∈ S and αi = 0 then remove i from S
6: if if i 6∈ S and αi not optimal then add i to S
7: end for
8: until convergence

Advantages:
• objective value increases monotonously
• converges to global optimum

Disadvantages:
• each step is computationally costly, since S can become large
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Sequential Minimal Optimization (SMO) [Platt 1998]

1: α← 0
2: repeat
3: pick index i such that αi is not optimal
4: pick index j 6= i arbitrarily (usually based on some heuristic)
5: αi , αj ← solve QP for αi , αj and all other αk fixed
6: until convergence

Advantages:
• convergences monotonously to global optimum
• each step optimizes a subproblem of smallest possible size:

2 unknowns (1 doesn’t work because of constraint ∑i αiyi = 0)
• subproblems have a closed-form solution

Disadvantages:
• many iterations are required
• many kernel values k(x i , x j) are computed more than once

(unless K is stored as matrix)
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SVMs Without Bias Term– OptimizationSVMs Without Bias Term

For optimization, the bias term is an annoyance
• In primal optimization, it often requires a different stepsize.
• In dual optimization, it is not straight-forward to recover.
• It couples the dual variables by an equality constraint: ∑i αiyi = 0.

We can get rid of the bias by the augmentation trick.
Original:
• f (x) = 〈w, x〉Rd + b, with w ∈ Rd , b ∈ R.

New augmented:
• linear: f (x) = 〈w̃, x̃〉Rd+1 , with w̃ = (w, b), x̃ = (x, 1).

• generalized: f (x) = 〈w̃, φ̃(x)〉H̃ with w̃ = (w, b), φ̃(x) = (φ(x), 1).

• kernelize: k̃(x, x̄) = 〈φ̃(x), φ̃(x̄)〉H̃ = k(x, x̄) + 1.
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SVMs Without Bias Term– OptimizationSVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd ,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi〈w, x i〉 ≥ 1− ξi , and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑

i,j
αiαjyiyj k(x i , x j) +

∑

i
αi

subject to, 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Difference: no constraint ∑i yiαi = 0.
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Linear SVM Optimization in the DualLinear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent
α← 0.
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
solve QP w.r.t. αi with all αj for j 6= i fixed.

end for
return α

Properties:
• converges monotonically to global optimum
• each subproblem has smallest possible size

Open Problem:
• how to make each step efficient?
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SVM Optimization in the DualSVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C ]n −1

2
∑

i,j αiαjyiyj k(x i , x j) +∑
i αi

When all αj except αi are fixed: maxαi∈[0,C ] F(αi), with

F(αi) = −1
2α

2
i k(x i , x i) + αi

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

∂

∂αi
F(αi) = −αik(x i , x i) +

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

αopt
i = αi +

1− yi ∑n
j=1 αjyj k(x i , x j)
k(x i , x i) , αi =





0 if αopt
i < 0,

C if αopt
i > C ,

αopt
i otherwise.

(except if k(x i , x i) = 0, but then k(x i , x j) = 0, so αi has no influence)

Observation: each update has complexity O(n).
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(Generalized) Linear SVM Optimization in the Dual(Generalized) Linear SVM Optimization in the Dual

Let k(x, x̄) = 〈φ(x), φ(x̄)〉Rd for explicitly known φ : X → Rd .

αopt
i = αi +

1− yi ∑
j αjyj k(x i , x j)

k(x i , x i) ,

remember w = ∑
j αjyjφ(x j)

= αi + 1− yi〈w, φ(x i)〉
‖φ(x i)‖2 ,

• each update takes O(d), independent of n
I 〈w, φ(x i)〉 takes at most O(d) for explicit w ∈ Rd , φ(x i) ∈ Rd

I we must also take care that w remains up to date (also at most O(d))
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(Generalized) Linear SVM Optimization in the Dual(Generalized) Linear SVM Optimization in the Dual

SCDA for (Generalized) Linear SVMs [Hsieh, 2008]
initialize α← 0, w ← 0
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
δ ← 1−yi〈w,φ(xi)〉

‖φ(xi)‖2

αi ←





0, if αi + δ < 0,
C , if αi + δ > C ,
αi + δ, otherwise.

w ← w + δyiφ(x i)
end for
return α, w

Properties:
• converges monotonically to global optimum
• complexity of each step is independent of n
• resembles stochastic gradient method, but automatic step size
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You’ve trained a new predictor, g : X → Y, and you want to tell the
world how good it is. How to measure this?

Reminder:
• The average loss on the training set, 1

|Dtrn |
∑

(x,y)∈Dtrn `(y, g(x))
tells us (almost) nothing about the future loss.
Reporting it would be misleading as best.
• The relevant quantity is the expected risk,

R(g) = E(x,y)∼p(x,y) `(y, g(x))

which unfornately we cannot compute, since p(x, y) is unknown.
• If we have data Dtst

i.i.d.∼ p(x, y), we have,
1
|Dtst |

∑

(x,y)∈Dtst

`(y, g(x)) |Dtst |→∞−→ E(x,y)∼p(x,y) `(y, g(x))

• Problem: samples `(y, g(x)) must me independent, otherwise law of
large numbers doesn’t hold.
• Make sure that g is independent of Dtst .



Classifier Training (idealized)

input training data Dtrn
input learning procedure A

g ← A[D] (apply A with D as training set)
output resulting classifier g : X → Y

Classifier Evaluation
input trained classifier g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.
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Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn ] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.
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Remark: The split because Dtrn and Dtst must be absolute.
• Do not use Dtst for anything except the very last step.

• Do not look at Dtst! Even if the learning algorithm doesn’t see it,
you looking at it can and will influence your model design or
parameter selection (human overfitting).

• In particular, this applies to datasets that come with predefined set
of test data, such as MNIST, PASCAL VOC, ImageNet, etc.

In practice we often want more: not just evaluate one classifier, but
• select the best algorithm or parameters amongst multiple ones

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:
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Training and Selecting between Multiple Models

input data D
input set of method A = {A1, . . . ,AK}
split D = Dtrnval ∪̇ Dtst disjointly
set aside Dtst to a safe place (do not look at it)
split Dtrnval = Dtrn ∪̇ Dval disjointly
for all models Ai ∈ A do

gi ← Ai [Dtrn ]
apply gi to Dval and measure performance Eval(Ai)

end for
pick best performing Ai

(optional) gi ← Ai [Dtrnval ] // retrain on larger dataset
apply gi to Dtst and measure performance Rtst

output performance estimate Rtst

How to split? For example 1/3–1/3–1/3 or 70%–10%–20%.



Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Eval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Eval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval , so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn , this does not mean it’ll also work well when trained on Dtrnval .
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Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function `
input data D (trnval part only: test part set aside earlier)
for all (x i , yi) ∈ D do

g¬i ← A[ D \ {(x i , yi)} ] // Dtrn is D with i-th example removed
r i ← `(yi , g¬i(x i)) // Dval = {(x i , yi)}, disjoint to Dtrn

end for
output Rloo = 1

n
∑n

i=1 r i (average leave-one-out risk)

Properties.
• Each r i is a unbiased (but noisy) estimate of the risk R(g¬i)
• D \ {(x i , yi)} is almost the same as D, so we can hope that each

g¬i is almost the same as g = A[D].
• Therefore, Rloo can be expected a good estimate of R(g)

Problem: slow, trains n times on n − 1 examples instead of once on n



Compromise: use fixed number of small Dval

K -fold Cross Validation (CV)

input algorithm A, loss function `, data D (trnval part)
split D = ⋃̇K

k=1Dk into K equal sized disjoint parts
for k = 1, . . . ,K do

g¬k ← A[D \ Dk ]
rk ← 1

|Dk |
∑

(x,y)∈Dk `(y
i , g¬k(x))

end for
output RK -CV = 1

K
∑n

k=1 rk (K -fold cross-validation risk)

Observation.
• for K = |D| same as leave-one-out error.
• approximately k times increase in runtime.
• most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K = 2



5× 2 Cross Validation (5× 2-CV)

input algorithm A, loss function `, data D (trnval part)
for k = 1, . . . , 5 do
Split D = D1 ∪̇ D2
g1 ← A[D1],
rk

1 ← evaluate g1 on D2
g2 ← A[D2],
rk

2 ← evaluate g2 on D1
rk ← 1

2(r1
k + r2

k )
end for

output E5×2 = 1
5
∑5

k=1 rk

Observation.
• 5× 2-CV is really the average of 5 runs of 2-fold CV
• very easy to implement: shuffle the data and split into halfs
• within each run the training sets are disjoint and the classifiers g1
and g2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.
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