
Introduction to Statistical Learning and Machine
Learning

Chap 5 & Chap6 – SVM and Kernel Methods

Yanwei Fu

School of Data Science, Fudan University

1/71

1 Recap – Nearest Neighbour, Logitic Regression

2 Support Vector Machines

3 Advanced issues of Kernels and SVM

4 Appendix–Practical Issues in Machine Learning Experiments

5 Appendix–Geometry of the Linear SVM

6 Appendix–Gradient Descendent of Logitic Regression

2/71

Recap – Nearest Neighbour, Logitic Regression

3/71

Classification: Oranges and LemonsClassification: Oranges and Lemons

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 3 / 13

4/71

Classification: Oranges and LemonsClassification: Oranges and Lemons

Can$construct$simple$
linear$decision$
boundary:$$$$
$$$y$=$sign(w0$+$w1x1$$$$$$$$$$$$$$$$$$$

$$$$$$$$+$w2x2)$

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 4 / 13

4/71

What is the meaning of ”linear” classification
What is the meaning of ”linear” classification

Classification is intrinsically non-linear

I It puts non-identical things in the same class, so a difference in the
input vector sometimes causes zero change in the answer

Linear classification means that the part that adapts is linear (just like linear
regression)

z(x) = wTx + w0

with adaptive w,w0

The adaptive part is follow by a non-linearity to make the decision

y(x) = f (z(x))

What f have we seen so far in class?

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 5 / 13

5/71

Supervised Learning in a nutshell(1)

6/71

Supervised Learning: training

7/71

Supervised Learning: testing

8/71

Classification as Induction
Classification as Induction

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 6 / 13

9/71

Instance-based LearningInstance-based Learning

Alternative to parametric model is non-parametric

Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

Learning amounts to simply storing training data

Test instances classified using similar training instances

Embodies often sensible underlying assumptions:

I Output varies smoothly with input
I Data occupies sub-space of high-dimensional input space

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 7 / 13

Memorization Ability Vs. Generalization Ability:
[1] A close look at memorization ability in deep neural network,
ICML 2017

10/71

Nearest Neighbors
Nearest Neighbors

Assume training examples correspond to points in d-dimensional Euclidean
space

Target function value for new query estimated from known value of nearest
training example(s)

Distance typically defined to be Euclidean:

||x(a) − x(b)||2 =

√√√√
d∑

j=1

(x
(a)
j − x

(b)
j)2

Algorithm

1. find example (x∗, t∗) closest to the test instance x(q)

2. output y (q) = t∗

Note: we don’t need to compute the square root. Why?

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 8 / 13

11/71

Nearest Neighbors Decision BoundariesNearest Neighbors Decision Boundaries

Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred

Decision boundaries: Voronoi diagram visualization
I show how input space divided into classes
I each line segment is equidistant between two points of opposite classes

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 9 / 13

Voronoi Diagram is also known as Dirichlet tessellation.

12/71

The Delaunay triangulation is the straight-line dual of the
Voronoi Diagram.

1 Voronoi regions are in 1-to-1 correspondence with points.

2 Most Voronoi vertices have valence 3.

3 Voronoi faces can be unbounded.
13/71

k Nearest Neighbors
k Nearest Neighbors

Nearest neighbors sensitive to mis-labeled data (“class noise”) → smooth by
having k nearest neighbors vote

Algorithm:

1. find k examples {x(i), t(i)} closest to the test instance x
2. classification output is majority class

y = arg max
t(z)

k∑

r=1

δ(t(z), t(r))

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 10 / 13

14/71

k Nearest Neighbors: Issues & Remedies
k Nearest Neighbors: Issues & Remedies

Some attributes have larger ranges, so are treated as more important

I normalize scale

Irrelevant, correlated attributes add noise to distance measure

I eliminate some attributes
I or vary and possibly adapt weight of attributes

Non-metric attributes (symbols)

I Hamming distance

Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn2). We need to reduce computational
burden:

1. Use subset of dimensions
2. Use subset of examples

I Remove examples that lie within Voronoi region
I Form efficient search tree (kd-tree), use Hashing (LSH), etc

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 11 / 13

15/71

Decision Boundary K-NN
Decision Boundary K-NN

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 12 / 13

16/71

K-NN Summary
K-NN Summary

Single parameter (k) → how do we set it?

Naturally forms complex decision boundaries; adapts to data density

Problems:

I Sensitive to class noise.
I Sensitive to dimensional scales.
I Distances are less meaningful in high dimensions
I Scales with number of examples

Inductive Bias: What kind of decision boundaries do we expect to find?

Urtasun & Zemel (UofT) CSC 411: 05-Nearest Neighbors Sep 28, 2015 13 / 13

17/71

Logistic RegressionLogistic Regression

An alternative: replace the sign(·) with the sigmoid or logistic function

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)

where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

0

0.5

0

1

The output is a smooth function of the inputs and the weights

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 3 / 16

18/71

Logistic RegressionLogistic Regression

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)

where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

I One parameter per data dimension (feature)
I Features can be discrete or continuous
I Output of the model: value y ∈ [0, 1]
I This allows for gradient-based learning of the parameters: smoothed

version of the sign(·)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 4 / 16

19/71

Shape of Logistic FunctionShape of the Logistic Function

Let’s look at how modifying w changes the function shape

1D example:
y = σ (w1x + w0)

Demo

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 5 / 16

20/71

Probabilistic InterpretationProbabilistic Interpretation

If we have a value between 0 and 1, let’s use it to model the posterior

p(C = 0|x) = σ(wTx + w0) with σ(z) =
1

1 + exp(−z)

Substituting we have

p(C = 0|x) =
1

1 + exp (−wTx− w0)

Supposed we have two classes, how can I compute p(C = 1|x)?

Use the marginalization property of probability

p(C = 1|x) + p(C = 0|x) = 1

Thus (show matlab)

p(C = 1|x) = 1− 1

1 + exp (−wTx− w0)
=

exp(−wTx− w0)

1 + exp (−wTx− w0)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 6 / 16

21/71

Conditional likelihood(MLE)Conditional likelihood

Assume t ∈ {0, 1}, we can write the probability distribution of each of our
training points p(t(1), · · · , t(N)|x(1), · · · x(N))

Assuming that the training examples are sampled IID: independent and
identically distributed

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏

i=1

p(t(i)|x(i))

We can write each probability as

p(t(i)|x(i)) = p(C = 1|x(i))t(i)p(C = 0|x(i))1−t(i)

=
(

1− p(C = 0|x(i))
)t(i)

p(C = 0|x(i))1−t(i)

We might want to learn the model, by maximizing the conditional likelihood

max
w

N∏

i=1

p(t(i)|x(i))

Convert this into a minimization so that we can write the loss function

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 7 / 16

22/71

Loss FunctionLoss Function

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏

i=1

p(t(i)|x(i))

=
N∏

i=1

(
1− p(C = 0|x(i))

)t(i)
p(C = 0|x(i))1−t(i)

It’s convenient to take the logarithm and convert the maximization into
minimization by changing the sign

`log (w) = −
N∑

i=1

t(i) log(1−p(C = 0|x(i),w))−
N∑

i=1

(1−t(i)) log p(C = 0|x(i),w)

Why is this equivalent to maximize the conditional likelihood?

Is there a closed form solution?

It’s a convex function of w. Can we get the global optimum?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 8 / 16

23/71

Regularization(MAP)Regularization

We can also look at

p(w|{t}, {x}) ∝ p({t}|{x},w) p(w)

with {t} = (t(1), · · · , t(N)), and {x} = (x(1), · · · , x(N))

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

max
w

log

[
p(w)

∏

i

p(t(i)|x(i),w)

]

What’s p(w)?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 13 / 16

24/71

Regularized Logistic RegressionRegularized Logistic Regression

For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N (0, αI)

This prior pushes parameters towards zero

Including this prior the new gradient is

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj
− λαw (t)

j

where t here refers to iteration of the gradient descent

How do we decide the best value of α?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 14 / 16

25/71

Use of Validation SetUse of Validation Set

We can divide the set of training examples into two disjoint sets: training
and validation

Use the first set (i.e., training) to estimate the weights w for different values
of α

Use the second set (i.e., validation) to estimate the best α, by evaluating
how well the classifier does in this second set

This test how well you generalized to unseen data

The parameter α is the importance of the regularization, and it’s a
hyper-parameter

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 15 / 16

26/71

Support Vector Machines

27/71

Logistic Regression
Logistic Regression

y =

{
1 if (wTx + b) ≥ 0

−1 if (wTx + b) < 0

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 3 / 9

28/71

Overview
Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feature space.

If we cannot, we get creative in two ways:

• We soften what we mean by “separates”, and

• We enrich and enlarge the feature space so that separation
is possible.

1 / 21

29/71

What is a Hyperplane?
What is a Hyperplane?

• A hyperplane in p dimensions is a flat affine subspace of
dimension p− 1.

• In general the equation for a hyperplane has the form

β0 + β1X1 + β2X2 + . . .+ βpXp = 0

• In p = 2 dimensions a hyperplane is a line.

• If β0 = 0, the hyperplane goes through the origin,
otherwise not.

• The vector β = (β1, β2, · · · , βp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.

2 / 21

30/71

Separating Hyperplanes
Separating Hyperplanes

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

• If f(X) = β0 + β1X1 + · · ·+ βpXp, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

• If we code the colored points as Yi = +1 for blue, say, and
Yi = −1 for mauve, then if Yi · f(Xi) > 0 for all i, f(X) = 0
defines a separating hyperplane.

4 / 21

31/71

Maximal Margin Classification
Max margin classification

Instead of fitting all the points, focus on boundary points

Aim: learn a boundary that leads to the largest margin (buffer) from points
on both sides

Why: intuition; theoretical support; and works well in practice

Subset of vectors that support (determine boundary) are called the support
vectors

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 4 / 9

32/71

Maximal Margin ClassierMaximal Margin Classifier
Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

Constrained optimization problem

maximize
β0,β1,...,βp

M

subject to

p∑

j=1

β2
j = 1,

yi(β0 + β1xi1 + . . .+ βpxip) ≥M
for all i = 1, . . . , N.

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package e1071 solves
this problem efficiently

5 / 21

33/71

Maximal Margin ClassierMaximal Margin Classifier
Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

Constrained optimization problem

maximize
β0,β1,...,βp

M

subject to

p∑

j=1

β2
j = 1,

yi(β0 + β1xi1 + . . .+ βpxip) ≥M
for all i = 1, . . . , N.

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package e1071 solves
this problem efficiently

5 / 21

33/71

Non-separable Data
Non-separable Data

0 1 2 3

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

X1

X
2

The data on the left are
not separable by a linear
boundary.

This is often the case,
unless N < p.

6 / 21

34/71

Noisy Data

Noisy Data

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.

7 / 21

35/71

Noisy Data

Noisy Data

−1 0 1 2 3

−
1

0
1

2
3

−1 0 1 2 3

−
1

0
1

2
3

X1X1

X
2

X
2

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

The support vector classifier maximizes a soft margin.

7 / 21

35/71

Our Goals

We might be willing to consider a classifier based on a hyperplane that
does not perfectly separate the two classes, in the interest of,

1 Greater robustness to individual observations, and,

2 Better classification of most of the training observations.

36/71

Support Vector Classier
Support Vector Classifier

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
1

0
1

2
3

4

1

2

3

4 5

6

7

8

9

10

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
1

0
1

2
3

4

1

2

3

4 5

6

7

8

9

10

11

12

X1X1

X
2

X
2

maximize
β0,β1,...,βp,ε1,...,εn

M subject to

p∑

j=1

β2
j = 1,

yi(β0 + β1xi1 + β2xi2 + . . .+ βpxip) ≥M(1− εi),

εi ≥ 0,
n∑

i=1

εi ≤ C,

8 / 21

37/71

C is a regularization parameter
C is a regularization parameter

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

−1 0 1 2

−
3

−
2

−
1

0
1

2
3

X1X1

X1X1

X
2

X
2

X
2

X
2

9 / 21

Read Chap 2.2.2 “The Bias-Variance Trade-Off” of the text book.

38/71

SVM in a Nutshell

39/71

Linear boundary can fail
Linear boundary can fail

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

Sometime a linear bound-
ary simply won’t work,
no matter what value of
C.

The example on the left
is such a case.

What to do?

10 / 21

40/71

Feature ExpansionFeature Expansion

• Enlarge the space of features by including transformations;
e.g. X2

1 , X3
1 , X1X2, X1X

2
2 ,. . .. Hence go from a

p-dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of

just (X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).

11 / 21

41/71

Feature ExpansionFeature Expansion

• Enlarge the space of features by including transformations;
e.g. X2

1 , X3
1 , X1X2, X1X

2
2 ,. . .. Hence go from a

p-dimensional space to a M > p dimensional space.

• Fit a support-vector classifier in the enlarged space.

• This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X
2
1 , X

2
2 , X1X2) instead of

just (X1, X2). Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 = 0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).

11 / 21

41/71

Cubic PolynomialsCubic Polynomials
Here we use a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

β0+β1X1+β2X2+β3X
2
1+β4X

2
2+β5X1X2+β6X

3
1+β7X

3
2+β8X1X

2
2+β9X

2
1X2 = 0

12 / 21

42/71

Cubic PolynomialsCubic Polynomials
Here we use a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

β0+β1X1+β2X2+β3X
2
1+β4X

2
2+β5X1X2+β6X

3
1+β7X

3
2+β8X1X

2
2+β9X

2
1X2 = 0

12 / 21

42/71

Nonlinearities and Kernels
Nonlinearities and Kernels

• Polynomials (especially high-dimensional ones) get wild
rather fast.

• There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

• Before we discuss these, we must understand the role of
inner products in support-vector classifiers.

13 / 21

43/71

Inner products and support vectorsInner products and support vectors

〈xi, xi′〉 =

p∑

j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑

i∈S
α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]

14 / 21

44/71

Inner products and support vectorsInner products and support vectors

〈xi, xi′〉 =

p∑

j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑

i∈S
α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]

14 / 21

44/71

Inner products and support vectorsInner products and support vectors

〈xi, xi′〉 =

p∑

j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑

i∈S
α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]

14 / 21

44/71

Inner products and support vectorsInner products and support vectors

〈xi, xi′〉 =

p∑

j=1

xijxi′j — inner product between vectors

• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi〈x, xi〉 — n parameters

• To estimate the parameters α1, . . . , αn and β0, all we need
are the

(
n
2

)
inner products 〈xi, xi′〉 between all pairs of

training observations.

It turns out that most of the α̂i can be zero:

f(x) = β0 +
∑

i∈S
α̂i〈x, xi〉

S is the support set of indices i such that α̂i > 0. [see slide 8]
14 / 21

44/71

Kernels and Support Vector MachinesKernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑

j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑

i∈S
α̂iK(x, xi).

15 / 21

45/71

Kernels and Support Vector MachinesKernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑

j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑

i∈S
α̂iK(x, xi).

15 / 21

45/71

Kernels and Support Vector MachinesKernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑

j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑

i∈S
α̂iK(x, xi).

15 / 21

45/71

Kernels and Support Vector MachinesKernels and Support Vector Machines

• If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

• Some special kernel functions can do this for us. E.g.

K(xi, xi′) =

1 +

p∑

j=1

xijxi′j

d

computes the inner-products needed for d dimensional
polynomials —

(
p+d
d

)
basis functions!

Try it for p = 2 and d = 2.

• The solution has the form

f(x) = β0 +
∑

i∈S
α̂iK(x, xi).

15 / 21

45/71

Radial Kernel
Radial Kernel

K(xi, xi′) = exp(−γ
p∑

j=1

(xij − xi′j)2).

−4 −2 0 2 4

−
4

−
2

0
2

4

−4 −2 0 2 4

−
4

−
2

0
2

4

X1X1

X
2

X
2

f(x) = β0+
∑

i∈S
α̂iK(x, xi)

Implicit feature space;
very high dimensional.

Controls variance by
squashing down most
dimensions severely

16 / 21

46/71

Example: Heart Data
Example: Heart Data

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Support Vector Classifier

LDA

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Support Vector Classifier

SVM: γ=10
−3

SVM: γ=10
−2

SVM: γ=10
−1

ROC curve is obtained by changing the threshold 0 to threshold
t in f̂(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.

17 / 21

47/71

Example continued: Heart Test Data
Example continued: Heart Test Data

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Support Vector Classifier

LDA

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Support Vector Classifier

SVM: γ=10
−3

SVM: γ=10
−2

SVM: γ=10
−1

18 / 21

48/71

SVMs: more than 2 classes?SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

19 / 21

49/71

SVMs: more than 2 classes?SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

19 / 21

49/71

SVMs: more than 2 classes?SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

19 / 21

49/71

SVMs: more than 2 classes?SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM
classifiers f̂k(x), k = 1, . . . ,K; each class versus
the rest. Classify x∗ to the class for which f̂k(x

∗)
is largest.

OVO One versus One. Fit all
(
K
2

)
pairwise classifiers

f̂k`(x). Classify x∗ to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.

19 / 21

49/71

Support Vector versus Logistic Regression?
Support Vector versus Logistic Regression?

With f(X) = β0 + β1X1 + . . .+ βpXp can rephrase
support-vector classifier optimization as

minimize
β0,β1,...,βp

n∑

i=1

max [0, 1− yif(xi)] + λ

p∑

j=1

β2j

−6 −4 −2 0 2

0
2

4
6

8

L
o
s
s

SVM Loss

Logistic Regression Loss

yi(β0 + β1xi1 + . . . + βpxip)

This has the form
loss plus penalty.
The loss is known as the
hinge loss.
Very similar to “loss” in
logistic regression (negative
log-likelihood).

20 / 21

50/71

Which to use: SVM or Logistic Regression
Which to use: SVM or Logistic Regression

• When classes are (nearly) separable, SVM does better than
LR. So does LDA.

• When not, LR (with ridge penalty) and SVM very similar.

• If you wish to estimate probabilities, LR is the choice.

• For nonlinear boundaries, kernel SVMs are popular. Can
use kernels with LR and LDA as well, but computations
are more expensive.

21 / 21

51/71

Advanced issues of Kernels and SVM
Detailed duality, please refer to Page 215 – 229, (Chap 5), Stephen
Byod et al. “Convex Optimization” 2004, Cambridge University
Press

52/71

Constructing KernelsConstructing Kernels

Checking if a given function k : X × X → R is a kernel can be hard.
• k(x, x̄) = tanh(1 + 〈x, x̄〉) ?
• k(x, x̄) = exp(− edit distance between two strings x and x̄) ?
• k(x, x̄) = 1− ‖x − x̄‖2 ?

Easier: construct functions that are garanteed to be kernels:

Construct explicitly:
• any φ : X → Rm induces a kernel k(x, x̄) = 〈φ(x), φ(x̄)〉.

in particular any f : X → R, k(x, x̄) = f (x)f (x̄)

Construction from other kernels:
• If k is a kernel and α ∈ R+, then k + α and αk are kernels.

• if k1, k2 are kernels, then k1 + k2 and k1 · k2 are kernels.

• if k is a kernel, then exp(k) is a kernel.

53/71

SVMs Without Bias Term– OptimizationSVMs Without Bias Term

For optimization, the bias term is an annoyance
• In primal optimization, it often requires a different stepsize.
• In dual optimization, it is not straight-forward to recover.
• It couples the dual variables by an equality constraint: ∑i αiyi = 0.

We can get rid of the bias by the augmentation trick.
Original:
• f (x) = 〈w, x〉Rd + b, with w ∈ Rd , b ∈ R.

New augmented:
• linear: f (x) = 〈w̃, x̃〉Rd+1 , with w̃ = (w, b), x̃ = (x, 1).

• generalized: f (x) = 〈w̃, φ̃(x)〉H̃ with w̃ = (w, b), φ̃(x) = (φ(x), 1).

• kernelize: k̃(x, x̄) = 〈φ̃(x), φ̃(x̄)〉H̃ = k(x, x̄) + 1.

54/71

SVMs Without Bias Term– OptimizationSVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd ,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi〈w, x i〉 ≥ 1− ξi , and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑

i,j
αiαjyiyj k(x i , x j) +

∑

i
αi

subject to, 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Difference: no constraint ∑i yiαi = 0.

54/71

SVMs Without Bias Term– OptimizationSVMs Without Bias Term – Optimization

SVM without bias term – primal optimization problem

min
w∈Rd ,ξ∈Rn

1
2‖w‖

2 + C
n∑

i=1
ξi

subject to, for i = 1, . . . ,n,

yi〈w, x i〉 ≥ 1− ξi , and ξi ≥ 0.

Difference: no b variable to optimize over

SVM without bias term – dual optimization problem

max
α

−1
2
∑

i,j
αiαjyiyj k(x i , x j) +

∑

i
αi

subject to, 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Difference: no constraint ∑i yiαi = 0.

54/71

Linear SVM Optimization in the DualLinear SVM Optimization in the Dual

Stochastic Coordinate Dual Ascent
α← 0.
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
solve QP w.r.t. αi with all αj for j 6= i fixed.

end for
return α

Properties:
• converges monotonically to global optimum
• each subproblem has smallest possible size

Open Problem:
• how to make each step efficient?

55/71

SVM Optimization in the DualSVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C]n −1

2
∑

i,j αiαjyiyj k(x i , x j) +∑
i αi

When all αj except αi are fixed: maxαi∈[0,C] F(αi), with

F(αi) = −1
2α

2
i k(x i , x i) + αi

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

∂

∂αi
F(αi) = −αik(x i , x i) +

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

αopt
i = αi +

1− yi ∑n
j=1 αjyj k(x i , x j)
k(x i , x i) , αi =

0 if αopt
i < 0,

C if αopt
i > C ,

αopt
i otherwise.

(except if k(x i , x i) = 0, but then k(x i , x j) = 0, so αi has no influence)

Observation: each update has complexity O(n).

56/71

SVM Optimization in the DualSVM Optimization in the Dual

What’s the complexity of the update step? Derive an explicit expression:
Original problem: maxα∈[0,C]n −1

2
∑

i,j αiαjyiyj k(x i , x j) +∑
i αi

When all αj except αi are fixed: maxαi∈[0,C] F(αi), with

F(αi) = −1
2α

2
i k(x i , x i) + αi

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

∂

∂αi
F(αi) = −αik(x i , x i) +

(
1− yi ∑

j 6=i
αjyj k(x i , x j)

)
+ const.

αopt
i = αi +

1− yi ∑n
j=1 αjyj k(x i , x j)
k(x i , x i) , αi =

0 if αopt
i < 0,

C if αopt
i > C ,

αopt
i otherwise.

(except if k(x i , x i) = 0, but then k(x i , x j) = 0, so αi has no influence)

Observation: each update has complexity O(n).

56/71

Optimizing the SVM Dual (kernelized)Optimizing the SVM Dual (kernelized)

How to solve the QP

max
α1,...,αn∈R

−1
2

n∑

i,j=1
αiαjyiyjk(x i , x j) +

n∑

i=1
αi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C , for i = 1, . . . ,n.

Observations:
• Kernel matrix K (with entries kij = k(x i , x j)) might be too big to
fit into memory.

• In the optimum, many of the αi are 0 and do not contribute.
If we knew which ones, we would save a lot of work

57/71

Optimizing the SVM Dual (kernelized)Optimizing the SVM Dual (kernelized)

Working set training [Osuna 1997]

1: S = ∅
2: repeat
3: α← solve QP with variables αi for i ∈ S and αi = 0 for i 6∈ S
4: for i = 1 . . . ,n do
5: if if i ∈ S and αi = 0 then remove i from S
6: if if i 6∈ S and αi not optimal then add i to S
7: end for
8: until convergence

Advantages:
• objective value increases monotonously
• converges to global optimum

Disadvantages:
• each step is computationally costly, since S can become large

57/71

Sequential Minimal Optimization (SMO) [Platt 1998]

1: α← 0
2: repeat
3: pick index i such that αi is not optimal
4: pick index j 6= i arbitrarily (usually based on some heuristic)
5: αi , αj ← solve QP for αi , αj and all other αk fixed
6: until convergence

Advantages:
• convergences monotonously to global optimum
• each step optimizes a subproblem of smallest possible size:

2 unknowns (1 doesn’t work because of constraint ∑i αiyi = 0)
• subproblems have a closed-form solution

Disadvantages:
• many iterations are required
• many kernel values k(x i , x j) are computed more than once

(unless K is stored as matrix)

58/71

(Generalized) Linear SVM Optimization in the Dual(Generalized) Linear SVM Optimization in the Dual

Let k(x, x̄) = 〈φ(x), φ(x̄)〉Rd for explicitly known φ : X → Rd .

αopt
i = αi +

1− yi ∑
j αjyj k(x i , x j)

k(x i , x i) ,

remember w = ∑
j αjyjφ(x j)

= αi + 1− yi〈w, φ(x i)〉
‖φ(x i)‖2 ,

• each update takes O(d), independent of n
I 〈w, φ(x i)〉 takes at most O(d) for explicit w ∈ Rd , φ(x i) ∈ Rd

I we must also take care that w remains up to date (also at most O(d))

59/71

(Generalized) Linear SVM Optimization in the Dual(Generalized) Linear SVM Optimization in the Dual

SCDA for (Generalized) Linear SVMs [Hsieh, 2008]
initialize α← 0, w ← 0
for t = 1, . . . ,T do

i ← random index (uniformly random or in epochs)
δ ← 1−yi〈w,φ(xi)〉

‖φ(xi)‖2

αi ←

0, if αi + δ < 0,
C , if αi + δ > C ,
αi + δ, otherwise.

w ← w + δyiφ(x i)
end for
return α, w

Properties:
• converges monotonically to global optimum
• complexity of each step is independent of n
• resembles stochastic gradient method, but automatic step size

59/71

Appendix–Practical Issues in Machine Learning Experiments

60/71

You’ve trained a new predictor, g : X → Y, and you want to tell the
world how good it is. How to measure this?

Reminder:
• The average loss on the training set, 1

|Dtrn |
∑

(x,y)∈Dtrn `(y, g(x))
tells us (almost) nothing about the future loss.
Reporting it would be misleading as best.
• The relevant quantity is the expected risk,

R(g) = E(x,y)∼p(x,y) `(y, g(x))

which unfornately we cannot compute, since p(x, y) is unknown.
• If we have data Dtst

i.i.d.∼ p(x, y), we have,
1
|Dtst |

∑

(x,y)∈Dtst

`(y, g(x)) |Dtst |→∞−→ E(x,y)∼p(x,y) `(y, g(x))

• Problem: samples `(y, g(x)) must me independent, otherwise law of
large numbers doesn’t hold.
• Make sure that g is independent of Dtst .

Classifier Training (idealized)

input training data Dtrn
input learning procedure A

g ← A[D] (apply A with D as training set)
output resulting classifier g : X → Y

Classifier Evaluation
input trained classifier g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.

Classifier Training (idealized)

input training data Dtrn
input learning procedure A

g ← A[D] (apply A with D as training set)
output resulting classifier g : X → Y

Classifier Evaluation
input trained classifier g : X → Y
input test data Dtst
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark: In commercial applications, this is realistic:
• given some training set one builds a single system,
• one deploys it to the customers,
• the customers use it on their own data, and complain if disappointed

In research, one typically has no customer, but only a fixed amount of
data to work with, so one simulates the above protocol.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.

Classifier Training and Evaluation

input data D
input learning method A
split D = Dtrn ∪̇ Dtst disjointly
set aside Dtst to a safe place // do not look at it
g ← A[Dtrn] // learn a predictor from Dtrn
apply g to Dtst and measure performance Rtst

output performance estimate Rtst

Remark. Dtst should be as small as possible, to keep Dtrn as big as
possible, but large enough to be convincing.
• sometimes: 50%/50% for small datasets
• more often: 80% training data, 20% test data
• for large datasets: 90% training, 10% test data.

Remark: The split because Dtrn and Dtst must be absolute.
• Do not use Dtst for anything except the very last step.

• Do not look at Dtst! Even if the learning algorithm doesn’t see it,
you looking at it can and will influence your model design or
parameter selection (human overfitting).

• In particular, this applies to datasets that come with predefined set
of test data, such as MNIST, PASCAL VOC, ImageNet, etc.

In practice we often want more: not just evaluate one classifier, but
• select the best algorithm or parameters amongst multiple ones

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:

Remark: The split because Dtrn and Dtst must be absolute.
• Do not use Dtst for anything except the very last step.

• Do not look at Dtst! Even if the learning algorithm doesn’t see it,
you looking at it can and will influence your model design or
parameter selection (human overfitting).

• In particular, this applies to datasets that come with predefined set
of test data, such as MNIST, PASCAL VOC, ImageNet, etc.

In practice we often want more: not just evaluate one classifier, but
• select the best algorithm or parameters amongst multiple ones

We simulate the classifier evaluation step during the training procedure.
This needs (at least) one additional data split:

Training and Selecting between Multiple Models

input data D
input set of method A = {A1, . . . ,AK}
split D = Dtrnval ∪̇ Dtst disjointly
set aside Dtst to a safe place (do not look at it)
split Dtrnval = Dtrn ∪̇ Dval disjointly
for all models Ai ∈ A do

gi ← Ai [Dtrn]
apply gi to Dval and measure performance Eval(Ai)

end for
pick best performing Ai

(optional) gi ← Ai [Dtrnval] // retrain on larger dataset
apply gi to Dtst and measure performance Rtst

output performance estimate Rtst

How to split? For example 1/3–1/3–1/3 or 70%–10%–20%.

Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Eval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !

Problems.
• small Dval is bad: Eval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval , so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn , this does not mean it’ll also work well when trained on Dtrnval .

Discussion.

• Each algorithm is trained on Dtrn and evaluated on disjoint Dval !

• You select a predictor based on Eval (its performance on Dval), only
afterwards Dtst is used. !

• Dtst is used to evaluate the final predictor and nothing else. !
Problems.
• small Dval is bad: Eval could be bad estimate of gA’s true
performance, and we might pick a suboptimal method.

• large Dval is bad: Dtrn is much smaller than Dtrnval , so the classifier
learned on Dtrn might be much worse than necessary.

• retraining the best model on Dtrnval might overcome that, but it
comes at a risk: just because a model worked well when trained on
Dtrn , this does not mean it’ll also work well when trained on Dtrnval .

Leave-one-out Evaluation (for a single model/algorithm)

input algorithm A
input loss function `
input data D (trnval part only: test part set aside earlier)
for all (x i , yi) ∈ D do

g¬i ← A[D \ {(x i , yi)}] // Dtrn is D with i-th example removed
r i ← `(yi , g¬i(x i)) // Dval = {(x i , yi)}, disjoint to Dtrn

end for
output Rloo = 1

n
∑n

i=1 r i (average leave-one-out risk)

Properties.
• Each r i is a unbiased (but noisy) estimate of the risk R(g¬i)
• D \ {(x i , yi)} is almost the same as D, so we can hope that each

g¬i is almost the same as g = A[D].
• Therefore, Rloo can be expected a good estimate of R(g)

Problem: slow, trains n times on n − 1 examples instead of once on n

Compromise: use fixed number of small Dval

K -fold Cross Validation (CV)

input algorithm A, loss function `, data D (trnval part)
split D = ⋃̇K

k=1Dk into K equal sized disjoint parts
for k = 1, . . . ,K do

g¬k ← A[D \ Dk]
rk ← 1

|Dk |
∑

(x,y)∈Dk `(y
i , g¬k(x))

end for
output RK -CV = 1

K
∑n

k=1 rk (K -fold cross-validation risk)

Observation.
• for K = |D| same as leave-one-out error.
• approximately k times increase in runtime.
• most common: k = 10 or k = 5.

Problem: training sets overlap, so the error estimates are correlated.
Exception: K = 2

5× 2 Cross Validation (5× 2-CV)

input algorithm A, loss function `, data D (trnval part)
for k = 1, . . . , 5 do
Split D = D1 ∪̇ D2
g1 ← A[D1],
rk

1 ← evaluate g1 on D2
g2 ← A[D2],
rk

2 ← evaluate g2 on D1
rk ← 1

2(r1
k + r2

k)
end for

output E5×2 = 1
5
∑5

k=1 rk

Observation.
• 5× 2-CV is really the average of 5 runs of 2-fold CV
• very easy to implement: shuffle the data and split into halfs
• within each run the training sets are disjoint and the classifiers g1
and g2 are independent

Problem: training sets are smaller than in 5- or 10-fold CV.

Appendix–Geometry of the Linear SVM

61/71

Summary: Linear SVM
Linear SVM

Max margin classifier: inputs in margin are of unknown class

y =

1 if wTx + b ≥ 1

−1 if wTx + b ≤ −1

Undefined if − 1 ≤ wTx + b ≤ 1

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 5 / 9

62/71

Summary: Geometry of the Linear SVM
Geometry of the Problem

The vector w is orthogonal to the +1 plane.
If u and v are two points on that plane, then

wT (u− v) = 0

Same is true for −1 plane

Also: for point x+ on +1 plane and x− nearest point on −1 plane:

x+ = λw + x−

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 6 / 9

63/71

Summary: Computing the MarginComputing the Margin

Also: for point x+ on +1 plane and x− nearest point on −1 plane:

x+ = λw + x−

wTx+ + b = 1

wT (λw + x−) + b = 1

wTx− + b + λwTw = 1

− 1 + λwTw = 1

Therefore

λ =
2

wTw

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 7 / 9

64/71

Summary: Computing the MarginComputing the Margin

Define the margin M to be the distance between the +1 and −1 planes

We can now express this in terms of w to maximize the margin we minimize
the length of w

M = ||x+ − x−||
= ||λw|| = λ

√
wTw

= 2

√
wTw

wTw
=

2√
wTw

=
2

||w||

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 8 / 9

64/71

Summary: Learning a Margin-Based Classier
Learning a Margin-Based Classifier

We can search for the optimal parameters (w and b) by finding a solution
that:

1. Correctly classifies the training examples: {(x(i), t(i))}Ni=1

2. Maximizes the margin (same as minimizing wTw)

min
w,b

1

2
||w||2

s.t.∀i (wTx(i) + b)t(i) ≥ 1,

This is call the primal formulation of Support Vector Machine (SVM)

Can optimize via projective gradient descent, etc.

Apply Lagrange multipliers: formulate equivalent problem

Urtasun & Zemel (UofT) CSC 411: 15-SVM I Nov 11, 2015 9 / 9

65/71

Appendix–Gradient Descendent of Logitic Regression

66/71

Loss Function of Logitic RegressionLoss Function

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏

i=1

p(t(i)|x(i))

=
N∏

i=1

(
1− p(C = 0|x(i))

)t(i)
p(C = 0|x(i))1−t(i)

It’s convenient to take the logarithm and convert the maximization into
minimization by changing the sign

`log (w) = −
N∑

i=1

t(i) log(1−p(C = 0|x(i),w))−
N∑

i=1

(1−t(i)) log p(C = 0|x(i),w)

Why is this equivalent to maximize the conditional likelihood?

Is there a closed form solution?

It’s a convex function of w. Can we get the global optimum?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 8 / 16

67/71

Gradient DescentGradient Descent

min
w

`(w) = min
w

{
−

N∑

i=1

t(i) log(1− p(C = 0|x(i),w))−
N∑

i=1

(1− t(i)) log p(C = 0|x(i),w)

}

Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size λ

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj

But where is w?

p(C = 0|x) =
1

1 + exp (−wTx− w0)
p(C = 1|x) =

exp(−wTx− w0)

1 + exp (−wTx− w0)

You can write this in vector form

5`(w) =

[
∂`(w)

∂w0
, · · · , ∂`(w)

∂wk

]T
, and 4 (w) = −λ5 `(w)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 9 / 16

68/71

Let’s look at the updatesLet’s look at the updates

The log likelihood is

`log−loss(w) = −
N∑

i=1

t(i) log p(C = 1|x(i),w)−
N∑

i=1

(1−t(i)) log p(C = 0|x(i),w)

where the probabilities are

p(C = 0|x,w) =
1

1 + exp(−z)
p(C = 1|x,w) =

exp(−z)

1 + exp(−z)

and z = wTx + w0

We can simplify

`(w) =
∑

i

t(i) log(1 + exp(−z(i))) +
∑

i

t(i)z(i) +
∑

i

(1− t(i)) log(1 + exp(−z(i)))

=
∑

i

log(1 + exp(−z(i))) +
∑

i

t(i)z(i)

Now it’s easy to take derivatives

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 10 / 16

69/71

UpdatesUpdates

`(w) =
∑

i

t(i)z (i) +
∑

i

log(1 + exp(−z (i)))

Now it’s easy to take derivatives

Remember z = wTx + w0

∂`

∂wj
=
∑

i

t(i)x
(i)
j − x

(i)
j ·

exp(−z (i))
1 + exp(−z (i))

What’s x
(i)
j ?

And simplifying

∂`

∂wj
=
∑

i

x
(i)
j

(
t(i) − p(C = 1|x(i))

)

Don’t get confused with indexes: j for the weight that we are updating and i
for the training example

Logistic regression has linear decision boundary

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 11 / 16

70/71

Acknowledgement

Acknowledgement

Some slides are in courtesy of
(1)Chap 9 of James et. al. “An Introduction to Statistical Learning
with applications in R”, 2011;
(2) Lecture 05,15, CSC 411 by Raquel Urtasun & Rich Zemel,
University of Toronto

71/71

	Recap – Nearest Neighbour, Logitic Regression
	Support Vector Machines
	Advanced issues of Kernels and SVM
	Appendix–Practical Issues in Machine Learning Experiments
	Appendix–Geometry of the Linear SVM
	Appendix–Gradient Descendent of Logitic Regression

