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Recap: Notations of Supervised Learning (1)

We use uppercase letters such as X, Y or G when referring to the generic aspects of a variable.




Recap: Notations of Supervised Learning (1)

We use uppercase letters such as X, Y or G when referring to the generic aspects of a variable.

X Input variables , a.k.a., features, predictors, independent variables.

Y output variables, a.k.a., response or dependent variable.
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Recap: Notations of Supervised Learning (1)

We use uppercase letters such as X, Y or G when referring to the generic aspects of a variable.

X Input variables , a.k.a., features, predictors, independent variables.

Y output variables, a.k.a., response or dependent variable.

Y =f(X)+e € captures measurement errors and other discrepancies.

l: X —Y Lossfunction, ! (y,y) IS the cost of predicting y/ if ¥ is correct.

]
¥ Fudan-SDS Confidential - Do Not Distribute




Recap: Notations of Supervised Learning (1)

We use uppercase letters such as X, Y or G when referring to the generic aspects of a variable.

X Input variables , a.k.a., features, predictors, independent variables.

Y output variables, a.k.a., response or dependent variable.

Y =f(X)+e € captures measurement errors and other discrepancies.

[: X =Y Lossfunction, ! (y,y) IS the cost of predicting y' if Y is correct.

Regression when we predict quantitative outputs (infinite set);
Classification when we predict qualitative outputs (finite set, e.g. Group labels, Ordered,)

Training set: D = {(z1,v1), (x2,¥2), -+ ,(Tn,Yn)} sampled from the joint distribution (X, Y).
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Recap: Notations of Supervised Learning (1)

We use uppercase letters such as X, Y or G when referring to the generic aspects of a variable.

X Input variables , a.k.a., features, predictors, independent variables.

Y output variables, a.k.a., response or dependent variable.

Y =f(X)+e € captures measurement errors and other discrepancies.

[: X =Y Lossfunction, ! (y,y) IS the cost of predicting y' if Y is correct.

Regression when we predict quantitative outputs (infinite set);
Classification when we predict qualitative outputs (finite set, e.g. Group labels, Ordered,)

Training set: D = {(z1,v1), (x2,¥2), -+ ,(Tn,Yn)} sampled from the joint distribution (X, Y).

.1.d: Independent and identically distributed random variables.
A seguence or other collection of random variables is 1.i.d. if each random variable has the same probability
distribution as the others and all are mutually independent.

P(AN B) = P(A)P(B).
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Recap: Notations of Supervised Learning

Matrices are represented by bold uppercase letters. X

Observed values are written in lowercase; hence the i-th observed value of X is written as

Dummy Variable: K-level qualitative variable is represented by a vector of K binary variables or bits, only
one of which is “on" at a time. a.k.a. One-hot vector Vs. Distributed Representation in Deep Learning.

Partition 3 N
k- JPartition 2

One-hot encoding | G /

V = {zebra, horse, school, summer} oy v

Distributed Representation.
Google Word2vec

v(zebra)
v(horse)
v(school)
v(summer)
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(+) Pros:
Simplicity
(-) Cons:

One-hot encoding can be memory inefficient 7 Cl=)
Notion of word similarity is undefined with one-hot encoding 4
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Some Important Concepts

Overfitting: a method yields a small training MSE but a large test MSE, we are said to be overfitting the data

his happens because our statistical learning procedure is working too hard to find patterns in the training data,
and may be picking up some patterns that are just caused by random chance rather than by true properties of

the unknown function f

Underfitting: a method function is not sufficient to fit the training samples. (Not small enough MSE on training
data).

]
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Some Important Concepts

Mean squared error (MSE), M SE = L Z(yi — fx:)?,

T

1=1

Overfitting: a method yields a small training MSE but a large test MSE, we are said to be overfitting the data

his happens because our statistical learning procedure is working too hard to find patterns in the training data,
and may be picking up some patterns that are just caused by random chance rather than by true properties of

the unknown function f

Underfitting: a method function is not sufficient to fit the training samples. (Not small enough MSE on training
data).
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Some Important Concepts

n

Mean squared error (MSE), M SE = L Z(yi — fx:)?,

T

1=1

We are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen
test data.

Overfitting: a method yields a small training MSE but a large test MSE, we are said to be overfitting the data

his happens because our statistical learning procedure is working too hard to find patterns in the training data,
and may be picking up some patterns that are just caused by random chance rather than by true properties of

the unknown function f

Underfitting: a method function is not sufficient to fit the training samples. (Not small enough MSE on training
data).
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Some Important Concepts

n

Mean squared error (MSE), M SE = 1 Z(yi — f(z3))?,

T

1=1

We are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen
test data.

Test MSE Ave(yg — f(xg))>, (xo,Yo) is a previously unseen test observation.

Overfitting: a method vields a small training MSE but a large test MSE, we are said to be overfitting the data

his happens because our statistical learning procedure is working too hard to find patterns in the training data,
and may be picking up some patterns that are just caused by random chance rather than by true properties of

the unknown function f

Underfitting: a method function is not sufficient to fit the training samples. (Not small enough MSE on training
data).
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Left: Data simulated from f shown in black. Three estimates of f are shown: the linear regression

line (orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE
(grey curve), test MSE (red curve), and minimum possible test MSE over all methods (dashed
line). Squares represent the training and test MSEs for the three fits shown in the left-hand panel.

GEE A B R R

Schvol of Dzla Scien

]
¥ Fudan-SDS Confidential - Do Not Distribute



Fudan-SDS Confidential - Do Not Distribute




Simple Linear regression with two degrees of freedom.

~
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Simple Linear regression with two degrees of freedom.

Expectation operator: E[:] Constants, Monotonicity, Linearity. E[X +c] =E[X] +c
E(X + Y| =E[X] + E[Y]
Elc] =c X <Y Amost surely E[X] <E[Y] EleX]| = aE[X
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Simple Linear regression with two degrees of freedom.

Expectation operator: E[:] Constants, Monotonicity, Linearity. E[X +c] = E|

X]|+c
E(X +Y]| =E[X]|+ E[Y]
Elc] = ¢ X <Y Amostsurely E[X] <E[Y] ElaX| = aE[X
Conditional expectation, For any two discrete random variables X, Y.
EX|Y=y=) z2-P(X=2z|Y =y), fry—= EX|Y =y).

We call it conditional expectation of X with respect to Y.  E[X]=E[E[X | Y]].
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The number of degrees of freedom (flexibility) is the number of values
in the final calculation of a statistic that are free to vary.  gimple Linear regression with two degrees of freedom.

Expectation operator: E[-] Constants, Monotonicity, Linearity. E[X +c]=E[X]+¢
E(X +Y] = E[X] + E[Y]
Elc] = ¢ X <Y Amostsurely E[X] <E[Y] ElaX| = aE[X
Conditional expectation, For any two discrete random variables X, Y.
EX|Y=y=) z2-P(X=2z|Y =y), fry—= E(X|Y =y).

We call it conditional expectation of X with respect to Y.  E[X]=E[E[X | Y]].
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The number of degrees of freedom (flexibility) is the number of values
in the final calculation of a statistic that are free to vary.  gimple Linear regression with two degrees of freedom.

Expectation operator: E[:] Constants, Monotonicity, Linearity. E[X +c]=E[X]+¢
E[X +Y] =E[X] + E[Y]
Elc] = ¢ X <Y Amostsurely E[X] <E[Y] ElaX| = aE[X

If the probability distribution of X admits a probability density function f (a:) then the expected value can be computed as

E[X] = /_ " 2f(z) da.

o0

Conditional expectation, For any two discrete random variables X, Y.

EX|Y=y=) z2-P(X=2z|Y =y), fry—= E(X|Y =y).

We call it conditional expectation of X with respect to Y.  E[X]=E[E[X | Y]].




Bias-Variance Trade-off(1)

s there an ideal f(X)?

0 —
<+ —
> o —
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! | | | | |
1 2 3 4 5 6
Take X=4 as and example,  f(4) = E(Y|X =4) X

f(x) = E(Y|X =) is called the regression function.

We minimise least square errors over all points X=x

E((Y - f(X))*X =2] = [f(z) — f(z)]* + Var(e)
) = N’
Reducible Irreducible

1 = |
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Bilas-Variance Trade-off(2)

A

E[(Y — f(X))*|X =2] = [f(z) — f(x)]*+ Var(e)
Reducible Irreducible

A A

E(Y-Y)? = E[f(X)+e—f(X)?
= [f(X)=F(X)PP+ Var(e) ,

N ——— N—
Reducible Irreducible

E(Y — Y)Q represents the average, or expected value, of the squared difference between the predicted
and actual value of Y.

Var(e) represents the variance associated with the error term €.

Expected values can also be used to compute the variance, by means of the computational formula for the variance

Var(X) = E[X?] — (E[X])°.

]
¥ Fudan-SDS Confidential - Do Not Distribute



Some Trade-off

Prediction accuracy versus interpretability.

Linear models are easy to interpret; thin-plate splines((EiR1¥5:1H{E) are not.
Good fit versus over-fit or under-fit.

How do we know when the fit is just right?

Parsimony versus black-box.
We often prefer a simpler model involving fewer variables over a black-box

predictor involving them all.

S _| Subset Selection
T Lasso
Least Squares
=
o . .
© Generalized Additive Models
© Trees
-
)
=
Bagging, Boosting
z | Support Vector Machines
-

':;:.’:Lt:‘% ] g . o T \ L
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Chap 2 -
Linear
Regression(1)

Non-parametric methods.
Vs. Parametric methods




Two basic ideas of How Do We Estimate f?

 Parametric Methods: Linear Least Square -> generalized linear models

1. we make an assumption about the functional form, or shape, of f f(X)=Bo+ BiX1 + aXo+ ...+ BpXp.

2. we use the training data to fit the model (parameters); Y & Bo+ Bi1X1 + BaXa+ ... + BoXp.

* Non-parametric Methods: Nearest Neighbors -> kernel method and SVM

1. We do not make explicit assumptions about the functional form of f Instead they seek an
estimate of f that gets as close to the data points as possible without being too rough or
wiggly.

2. Not make explicit assumptions about the functional form of f

fefsh A 4 ie 21
- School of Dzla Science
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An example of Parametric Vs. Non-parametric methods

The observations are displayed in red; the yellow plane indicates the fitted model; \

A linear model fit by
least squares to
the Income data

The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface
represents the true underlying relationship between income
and years of education and seniority, which is known since
the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.
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An example of Parametric Vs. Non-parametric methods

The observations are displayed in red; the yellow plane indicates the fitted model;

The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface
represents the true underlying relationship between income
and years of education and seniority, which is known since
the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.
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An example of Parametric Vs. Non-parametric methods

The observations are displayed in red; the yellow plane indicates the fitted model;

o _ =
Al model fit b -. - ‘ »
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income = 3y + (51 X education+ (59 X seniority.

@02/0
U
0

A smooth thin-

plate spline fit to
The plot displays income as a function of years of education the Income data.

and seniority in the Income data set. The blue surface
represents the true underlying relationship between income
and years of education and seniority, which is known since
the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.
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An example of Parametric Vs. Non-parametric methods

The observations are displayed in red; the yellow plane indicates the fitted model;
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Parametric Method Vs. Non-parametric Methods

Advantages

Disadvantages

method

Parametric | Reducing the hard problem down to estimating a set of parameters .

(easy);
Low variance;

the model we choose will usually not
match the true unknown form of f

These more complex models can lead

to a phenomenon known as overfitting

the data, which means they follow the
errors, or noise, too closely.

Non-
Parametric |
method

Avoiding the assumption of a particular functional form forf.

they do not reduce the problem of
estimatingfto a small number of
parameters, a very large number of
observations (far more than is typically

needed for a parametric approach) is
required in order to obtain an accurate

estimate for f

Why is it necessary to introduce so many different statistica
method? There is no free lunch in statistics: no one methoo

particular data set, one specific method may work best, bu

different data set.

Fudan-SDS Confidential - Do Not Distribute

learning approaches, rather than just a single best
dominates all others over all possible data sets. On a
' some other method may work better on a similar but
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Chap 2 -
Linear
Regression(1)

eSimple Linear Regression;
eKey concepts of Statistics
N Linear Regression;




Simple Linear Regression

Parametric method

Y = [y + 51 X.
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Simple Linear Regression

Parametric method

 Simple Linear Regression: Y is is quantitative (e.g price, blood pressure);on the basis of a single predictor
variable X.

Y =~ .80 + BlX :
Symbols explanations:
e You might read “=” as “Is approximately modeled as”;

* [Bo and [31 are two unknown constants that represent the intercept and slope terms;

e saying that we are regressing Y on X (or Y onto X).

e hat symbol, ", to denote the estimated value for an unknown parameter or coefficient, or to denote the
predicted value of the response.

SO how to estimate the Coefficients?

]
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Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression




Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = ,.Bo an ,,:”3’11177: be the prediction for Y based on the /-th value of X.

A=
t5%, Fudan-SDS Confidential - Do Not Distribute



Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = .:"90 = .31:17z' be the prediction for Y based on the /-th value of X.

e; = 1; — Ui represents the i-th residual —this is the difference between the i-th observed response
k 7t 7% value and the ith response value that is predicted by our linear model.

QTS .
s ! ! ’*' - >
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Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = .:"90 = .31:17z' be the prediction for Y based on the /-th value of X.

. ... __ . represents the i-th residual —this is the difference between the /i-th observed response
6@ E— yz T 'gz . . . .
value and the /th response value that is predicted by our linear model.

2 2 2
Residual sum of squares: RSS = el +6€ + -1+ €.

\.'-.';r;."_'/ﬁ, )
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Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = Bo + Przi be the prediction for Y based on the /-th value of X.

. ... __ . represents the i-th residual —this is the difference between the /i-th observed response
Ci = Yi — Yi - - - -
value and the /th response value that is predicted by our linear model.

Residual sum of squares: RSS = 6% -+ 63 + -+ ei

i@ —T) (Y — 7))

Leasﬁ squares B 1 5 :
coefficient estimators: Z (113‘7, — :IZ‘)

A\ N\

— P17

How to compute the minimizer?
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Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = Bo + 31:1.‘-2- be the prediction for Y based on the /-th value of X.

. ... __ . represents the i-th residual —this is the difference between the /i-th observed response
6@ B yz T sz . . . .
value and the /th response value that is predicted by our linear model.

2 2 2
Residual sum of squares: RSS = el +6€ + -1+ €.

i@ —T) (Y — 7))

L east squares B 1

5 : How to compute the minimizer?
coefficient estimators: Z (CL’Z — CIJ‘)
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Estimating the Coefficients of Simple Linear Regression

Simple Linear Regression

Ui = Bo + Przi be the prediction for Y based on the /-th value of X.

. ... __ . represents the i-th residual —this is the difference between the /i-th observed response
Ci = Yi — Yi - - - -
value and the /th response value that is predicted by our linear model.

Residual sum of squares: RSS = 6% -+ 63 + -+ ei

i@ —T) (Y — 7))

Least squares B 1 5 :
coefficient estimators: Z (113‘7, — :IZ‘)

How to compute the minimizer?

Homework: prove It.
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Assessing the Accuracy of the Coefficient Estimates

Simple Linear Regression

Population regression line Y =080+ 31X +e.
B Is the intercept term—that is, the expected value of Y when X =0,

31 is the slope—the average increase in Y associated with a one-unit increase in X.

Suppose we annotate M as the population mean of random variable Y

A reasonable estimate ,& =1, Yy = L 2?_1 Yi

n

If we use the sample mean [t to estimate /4, this estimate is unbiased.

So how accurate is the estimation?

0.2

Standard error of [ Var(ji) = SE(j1)" = —, 0 isthe standard deviation of each of the realisations ¥:

for uncorrelated observations.

School of Dala Scienc

-
¥ Fudan-SDS Confidential - Do Not Distribute



Assessing the Accuracy of the Coefficient Estimates

Simple Linear Regression

Population regression line Y =50+ /1 X —|— mean-zero random error term.

B Is the intercept term—that is, the expected value of Y when X =0,

31 is the slope—the average increase in Y associated with a one-unit increase in X.

Suppose we annotate M as the population mean of random variable Y

A reasonable estimate ,lAL =1, Yy = L 2?_1 Yi

n

If we use the sample mean [t to estimate /4, this estimate is unbiased.

So how accurate is the estimation?

0.2

Standard error of [l Var(ji) = SE(j1)° = —, O isthe standard deviation of each of the realisations i

for uncorrelated observations.

.QE
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¥ Fudan-SDS Confidential - Do Not Distribute N E }/

School of Dala Scienc



Standard Error and Confidence Intervals

Simple Linear Regression
- 2 9 I ]. f2 ] A 2 o

Standard Errors 3o and 8; SE(By) =o k | SRR SE(B1) = S (2 — )2 o2 = Var(e).

1=1
2

2

€; for each observation are uncorrelated with common variance g

The estimate of 0 residual standard error is known as the residual standard error.

RSE = /RSS/(n — 2)

For linear regression

: =
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Standard Error and Confidence Intervals

Simple Linear Regression

A N ~ 9 -1 :i.2 7 . 9 02
g — g2 | q — . 2 _ VUar
Standard Errors By and 3; SE(By) =o Ryl SE (/1) S (=72 o2 = Var(e).

€; for each observation are uncorrelated with common variance 02

The estimate of 0 residual standard error is known as the residual standard error.

RSE = /RSS/(n — 2)

1, Standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range
of values such that with 95% probabillity, the range will contain the true unknown value of the parameter:

For linear regression B1£2-SE(B).

]
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Standard Error and Confidence Intervals

Simple Linear Regression

. R . 9 1 T2 ] A2 o2
S — 2 I o — . 2 — *
Standard Errors 8y and 3; SE(Bo) =o Ryl SE (/1) S (=72 o2 = Var(e).

€; for each observation are uncorrelated with common variance 02

The estimate of 0 residual standard error is known as the residual standard error.

RSE = /RSS/(n — 2)

1, Standard errors can be used to compute confidence intervals. A 95% confidence interval is defined as a range
of values such that with 95% probabillity, the range will contain the true unknown value of the parameter:

For linear regression B1+2-SE(B).

There is approximately a 95% chance that the interval, (assume Gaussian Errors here).

[31 —2-SE(31), f1 +2- SE(BI)]

will contain the true value of 51

]
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Chap D - Linear Regression from

. Probabillistic Perspective
Linear

Regression(1)

[1] Chap 3.1, Bishop 2006




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added
(Gaussian noise:

t=y(x,w)+e where p(e|B) = N(e[0,57")

which Is the same as saying,
p(tIX, W, /6) — N’(t‘y(x’ W)v .6_1)°

Given observed inputs, X = {xi,...,xy} , andtargets,t=1(t,....ty|"
we obtain the likelihood function

N
p(t X, w, 8) = || Nt/ w b(xn), 7).

n=1

w = (wo,...,wp—1)" and ¢ = (Po,...,dnr—1)"

6 ~ precision (inverse variance)




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

Inp(tjw,B) = ZlnNﬂ(tnleﬁb(xn)’ﬁ_l)
— glnﬁ N In(27) — BEp (W)
where N
1
ED(W) — 5 Z{tn — WT(,b(Xn)}z
n=1

S~
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Maximum Likelihood and Least Squares (3)

Optional subtitle

Computing the gradient and setting it to zero yields

N

Vw Inp(tjw, 3) =0 Z {tn — WT¢(XR)} ¢(XH)T = 0.
Solving for w, we get

! The Moore-Penrose
1 do-i P
pseudo-inverse,

where

do(x1) d1(x1) -+ Om—1(xX1)
Po(X2)  P1(xX2) -0 dm—1(X2)

do(xn) $1(XN) -+ ar—1(xXn)

S~
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Geometry of Least Squares

Consider y = Pwyyp, = [cpl, Ceey QOM] WM, -

S
yeSCT tcT .
L IN-dimensional
M-dimensional P y

P1r---PM

S is spanned by
Wy minimizes the distance between t and its orthogonal projection on S, i.e. .

A8
5 v 2 ’
= & S o .L"E".a Kéﬂé@ —Jé I?u
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Sequential Learning

Big Data Problem? Lots of training data. Hard to load them all together.

Data items considered one at a time (a.k.a. online learning); use stochastic
(sequential) gradient descent:

(D)

wim) — nVE,
= w4+ N(tn — W(T)Tﬁb(xn))(b(xn)-

This is known as the least-mean-squares (LMS) algorithm.

= =
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Reqgularized Least Squares (1)

Consider the error function:

Ep (W) + \Ew (W)
Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer,
we get

A . -
- Z{t _ b (%) }2 2 wlw Homework: prove it

2

nl

Ais called the
regularization
coefficient.

which is minimized by  , _ ()\I_cpTcI))lcht,

= =
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Reqgularized Least Squares (2)

Optional subtitle

With a more general regularizer, we have

1 N A M
T 2
5.;{% — W P(x,)}" + §;\wj|q

T
]

qg = 0.5 q—=1 q =2 q =4

Lasso Quadratic

?'/: = |
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Reqgularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic
regularizer.
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The Bias-Variance Decomposition (1)

Optional subtitle

Recall the expected squared loss,

L] = /{y }px)dx+//{hx)—t} (Xt)dxdt
where

optimal prediction is given by B L
the conditional expectation hx) = Eltlx] = [ tp(t|x)dt. A

The second term of E[L] corresponds to fhe néise

iInherent In the random variable t.

What about the first term?

-
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The Bias-Variance Decomposition (2)

Optional subtitle

Suppose we were given multiple data sets, each of size N. Any
particular data set, D, will give a particular function y(x;D). We then
have

{y(x; D) — h(x)}’
= {y(x;D) — Ep[y(x; D)] + Eply(x: D)] — h(x)
= {y(x; D) — Eply(x; D)]}* + {Ep[y(x; D)] — h(x)}*
2{y(x; D) — Ep|y(x; D)| H{Ep[y(x; D)] — h(x)}.

}2
(

X

S~
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The Bias-Variance Decomposition (3)

Optional subtitle

Taking the expectation over D yields

ip [{y(x: D) — h(x)}”.

= AEply(x;D)] — /-?,(X)}Q + Ep [{y(x; D) — Eply(x; D)]}2] ’
(bias)2 variance

-
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The Bias-Variance Decomposition (4)

Optional subtitle

Thus we can write

expected loss = (bias)® + variance + noise

where
pins) = [ {Eply(x D)) - hx)}p(x) dx
variance = / o {y(x; D) — Eply(x; D)]}°] p(x) dx
noise = / {h(x) — t}*p(x, t)dx dt

‘-}"'r;‘.-’i‘?.t
_’{",/ ) ! Y *' ‘c.' E
=S L o = X =58 ’.t% —jé F;u
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The Bias-Variance Trade-oft

From these plots, we note that an over-regularized model (large ) will have a
high bias, while an under-regularized model (small ) will have a high variance.

0.15
(bias)”
0.12 1 variance
(bias)2 + variance
0.09 t l—/
0.06 1
0.03
O
-3 —72 —1 O ] 2

Culil v m
i /A= r <
2 - (=(E —_9 I %ﬂ ﬁ ‘? [?'-
L ¥ Fudan-SDS Confidential - Do Not Distribute ‘E / k . -
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Chap 2 - Recap&Multiple Linear

- Regression
I—I near * Multiple Linear Regression

Reg reSS|On(2) Sec 3.2 [James, 201 3]




Simple Linear Regression

Key Questions:
1 P _ (1)How do we parametrize the model *
N (2)What loss (objective) function should we
Y |a/ use to judge the fit?
|7 o\ © - (3)How do we optimize fit to unseen
test data (generalization )?
, B g
\ -
By : Training Set: D = {(x1,y1), (x2,Y2), * , (Tp,Yn)}
0 1
X

Y ~ 3'30 + 3'31 X.

Circles are data points (i.e., training examples) Given

In is the "true" curve that we don't know Y = B+ 51 X +e.

Goal : We want to fit a curve to these points.

AR
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Simple Linear Regression

Key Questions:
1 — _ (1)How do we parametrize the model ?
o N\ (2)What loss (objective) function should we
Y |6/ use to judge the fit?
1/ o\ © - (3)How do we optimize fit to unseen
test data (generalization )?
=y : Training Set: D = {(x1,41), (¥2,Y2) 5 (Tn, Yn) |
0 1
X

Yr ~ 'B() -+ 'Bl )(.

Circles are data points (i.e., training examples) Given

In IS the "true" curve that we don't know Y = By + By X + mean-zero

random error term.

Goal : We want to fit a curve to these points.




Noise

A simple model typically does not exactly fit the data — lack of fit can be considered

noise. Sources of noise:
-> Imprecision in data attributes (input noise)
-> Errors In data targets (mis-labeling)

-> Additional attributes not taken into account by data attributes, affect target values

(latent variables)

-> Model may be too simple to account for data targets.

Y,
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Optimizing the Objective (1)

Y =050+ /1 X + e

A

Standard loss/cost/objective function measures the squared error betweenY and Y
N

Ly, 9) = [y — (Bo+ Biz:)]”

1=1
How do we obtain the parameters in general?

100CCC
A
—m—
300CCC . S
<
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300CCC
/ o
gt — e
/ i <2
- - S
-~ S—_— <
@, — —
— S—
/ - —e—
/// ® o " g
-
100CCC
if! T
0?5
/ E—
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« . o Wy : @ . . s Selecksampse o1 m 5. e Select sample of m points
. ‘e points at random . . . q
* . ., S & . ‘e at random
... .o: _ \\, . a ..
. . . ., B X e e Calculate model
.« e .e ; . Now ’ parameters that fit the data
& B ° - . @ :
o . ’ B . N, . Yo N Ty BT B in the sample
e . . o L R . ¢ L * : * " L ® ° @ [ ® .'t . ® .
* * . - . o > - ne o N o e Calculate error function
- * N : -
. Hy . ) o . . * N . for each data point
- .'.. . N ® * . 0:. . \\ o z
a - a = Lo - . . e » Select data that
o - “ ) ¥ - support current
o . . * . "ee . N hypothesis
oo C s < \
g o e ) . “ ) .
. » : ¢ . . ®
s . ® ] Se ® [ .
» » . |. Matas @ CVPR 11 Registration Titorial l
¢ * e o8

2 RANSAC time complexity

LI o _,_,.6:‘. v '.
. * D . k ... number of samples
= Y /8 . drawn
S K . ) N ... number of data
o . points
B ) . ty ... time to compute a
. . single model
e °* e e ’ . Ms ... average number of
| models per
- : sample BN
Matas @ CVPR 11 Registration Tutorizl P [ 13/70 | I % ﬁ é% %é K
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Optimizing the Objective (2) g e

L > iy (@i — Z)(yi — 1)
S:? (2 —7)° |

Bo = § — P17,

0>

1, Closed form solution

2, Most straightforward solution: gradient descent

_ T

(1) initialize w (e.g., randomly) w = 0o, b1 o
(2) repeatedly update w by gradient W W — )\a

W

A is the learning rate

3, Two ways to generalize this for all examples in training set:

(1) Batch updates : sum or average updates across every example n, then change the parameter values

(2) Stochastic/online updates: update the parameters for each training case in turn, according to its own gradients

: =
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Insight of Linear Model

Polynomial Regression  vy; = (o + [B12; + ﬁzx? — ﬁgxf? + ...+ ﬁdajf + €;

Bias-Variance Decomposition

assume: ¥; = f (x;) + € for some function f and assume we have a “leaner” that make a training set D

€; 7 N (O, (92)

B
T3’  School of Dala Science
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Insight of Linear Model

Polynomial Regression  vy; = (o + [B12; + 5293? — ﬂg:lti? + ...+ 64{13,51 + €;

Bias-Variance Decomposition

assume: ¥; = f (x;) + € for some function f and assume we have a “leaner” that make a training set D

€; " N (O, (92)

T/lm ‘)C@r K New G/XOLWIJ)(@ (Xi7}/i) ﬂ\e error OU/WQ%@A o\l +(‘a,»h.'m(} sels RS “Trfeéufz'é/f

ELCGy=FGN ] = Bias| 3?()('.)}’\ 4 \/Mgf(x.)] 1 &,2/ errpe"

Experted error & A A 1365\‘& we Car
L;P\tcmﬁ W(Of\() W\V:Jjg;? \/\/h%’/g pﬂzﬂﬁ[ f(%/‘.)}: E[ ][*(XA)] _ j{:\()//l)) \’\UPE For’
L N 4 The
H@W an§!+lV€ (S ‘h\@ W\Uclg[ N _F( )z A B . 2 §”/%Vl
to the particalr trainin 5#7@—'&7/1C a | ({(‘C{) Eﬁﬁy,i@] noise level
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Supervised Learning Pipeline (Prepare for the Projects)

1, Given a training set X and y, with i.i.d assumption (training and test data drawn from
same distribution), if we have an explicit test set to approximate test error:

2, What if we don’t have an explicit test set?

Possible training procedures if you only have a training set:
(1). Randomly split training set into “train” and “validate” set.

(2). Train model based on train set.
(3). Report validate set accuracy with this model.

E | o Hinnonibe

W’h}”and How Baidu Chcated Golden rule- this test set > raining i
an Artificial Intelligence Test olaen ruie. inis test set cannot Infiuence training in any way.

Machine learning gets its first cheating scandal. If you VIOIate gOIden rUIe’ you Can Overflt tO the teSt C:Ia'.l:a'o

Ihe spors of training sof-ware to anT intelligently just gat its first cheating scandal. 1 asT month Chinesic search
B L T L LTI = e B | Y e L T R T 4 B B L B !
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Supervised Learning Pipeline (Prepare for the Projects)

1, Given a training set X and y, with i.i.d assumption (training and test data drawn from
same distribution), if we have an explicit test set to approximate test error:

D‘ﬁ“j [ —}FNW 2 Pfedid TQSf 5e7L /qé«’ltj 3. Eva [\Aq*f
X7 y) Xftsf)yt%‘f’ " OAf C+ O(y) />\/ = PfGAL(JL(p\OA@/) Xteﬂ) Error :_Jj.ﬁ\[y»/teg

2, What if we don’t have an explicit test set?

Possible training procedures if you only have a training set:
(1). Randomly split training set into “train” and “validate” set.

(2). Train model based on train set.
(3). Report validate set accuracy with this model.

)
Why and How Baidu Cheated Golden rule: this test set cannot influence training in any wa
an Artificial Intelligence T'est enruie. this test se uence 9 y wdy.

Machine learning gets its first cheating scandal. If you VIOIate gOIden rUIe’ you Can Overflt tO the teSt C:Ia'.l:a'o

Ihe spors of training sof-ware to anT intelligently just gat its first cheating scandal. 1 asT month Chinesic search
sarareirisianns Dealnde carsrmr s d Thal T Shes s wsamarsen daesaenalhan ol d Do el bl Ll o aoledt

NTD
PCTEL:
= /' i—y& o
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Supervised Learning Pipeline (Prepare for the Projects)

1, Given a training set X and y, with i.i.d assumption (training and test data drawn from
same distribution), if we have an explicit test set to approximate test error:

Dq’hlf [ e Al Q Predi(j TQSf 5ol /qéglj 5 Eva {uqﬁ?
X7 y) Xftbbyt%‘f’ " OA“(’ \C\+ (X}/7 }\/ = PFQAL(’%(W\OA‘@/) Xﬁe>+> error = Jj'ﬁ\[\/))/t&%)

2, What if we don’t have an explicit test set? e
Possible training procedures if you only have a training set: X= | Tro\m /\ ) frf«"w
(1). Randomly split training set into “train” and “validate” set. l (\; S W"J"‘U
(2). Train model based on train set. v el ¢ j |
(3). Report validate set accuracy with this model.

)
Why and How Baidu Checated Golden rule- this test set > fraining i
an Artificial Intelligence Test olaen ruie. inis test set cannot Infiuence training in any way.

Machine learning gets its first cheating scandal. If you VIOIate gOIden rUIe7 you Can Overflt tO the teSt C:Ia'.l:a'o

Ihe spors of training sof-ware to anT intelligently just gat its first cheating scandal. 1 asT month Chinesic search
B L T L LTI = e B | Y e L T R T 4 B B L B !
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What if we don’t have an explicit test set?(1)

Possible training procedures if you only have a training set.

1.Randomly split training set into “train” and “validate”
set.

2.Train 1 billion models based on train set.

1.Randomly split training set into “train” and
“validate” set.

2.Train 10 models based on train set (e.g., 10

different bases) 3.Choose one with highest accuracy on validate set.

3.Choose one with highest accuracy on validate set. ||4.Report validate set accuracy with this model.
4.Report validate set accuracy with this model.

We should be a little skeptical of this accuracy: | |
—We violated golden rule on validation set: *We should be a very skeptical of this accuracy:

»Approximation of test error was used to choose —We badly violated golden rule on validation set:
model. *High chance of overfitting to validation set.

—But we probably not overfitting much: only 10 models
considered.

\.'-.';r;."_'/ﬁ,
v.lf ‘\.' ! Y 4 tEg “?' E;\'
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What if we don’t have an explicit test set”?(2)

Possible training procedures if you only have a training set.
1.Randomly split training set into “train”, “validate”, and "“test” set.
2.Train 1 billion models based on train set.
3.Choose one with highest accuracy on validate set.
4.Report test set accuracy with this model.

*We can trust this accuracy is reasonable.
—We might still overfit to validate set, but test set not used during training.

—Proper cross-validation procedure:

‘Randomly split data into “train/crossValidate” and “test” set.

*Choose model with lowest cross-validation error on “train/crossValidate” set.
*Report error on “test” set which did not influence final model.

r B (
‘Jr 'V\/
X: AVm\'w\ /u“ 065\/“‘ Y - (r:%;ﬂ\
L Vool ) Yol -
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How to do Cross-Validation?

k-fold Cross Validation to estimate a tuning parameter A

Arrange the training examples in a random order.

Divide the data into K roughly equal parts
1 2 3 4 5

Validation | Train | Train | Train | Train

for each k =1,2,... K, fit the model with parameter A to the
other K — 1 parts, giving [3’_'“()\) and compute its error in
predicting the kth part:

Ek’()\) — Ziékth part (y@ o x’&[;_k()‘))2

This gives the cross-validation error

CV(A) = Z Er(X

]
¥ Fudan-SDS Confidential - Do Not Distribute

do this for many values of A and choose the value of A that
makes C'V(\) smallest.




Errors of Different Kinds

relevant elements

I l Positive  Negative Positive Negative Positive Negative
false negatives true negatives (retrieved case) (retrieved case) (retrieved case)
® o O O O f '

False False

Negative

False

Negative Negative

Positive ‘

False True
Positive Negative

False
Positive

False True

Negative Positive Negative

selected elements Accu racy Precision Recall
How many selectegj How many relevan;c = Qn Qﬂ:
items are relevant: items are selected:? 1= S_'l\ "‘%; ( g ro u nd — %Drl\ /)JJ =

4 truth) 1= =3l
—p E Ef TP (E1EH) FN ({Fz /2 f51)
i3] FP ({E1Ef) TN (E/f)

Confusion Matrix

&
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Multiple Linear Regression

Y = Bo+ 51Xy + BaXg + -+ B,X, + €,

sales = (B9 + 81 X TV + B2 X radio + 33 X newspaper + €.

Sales
Sales
Sales

| | I I | | l | I | I | I | | [ I |
50 100 200 300 0 10 20 30 40 50 0 20 40 60 80 100

TV Radio Newspaper

=
&
41

XEEFR
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Interpreting Regression Coefficients




Interpreting Regression Coefficients

* [he ideal scenario is when the predictors are uncorrelated --- a balanced design:

- Each coefficient can be estimated and tested separately.

- Interpretations such as "a unit change in X is associated with a 58; change in Y , while all the
other variables stay fixed", are possible.

e Correlations amongst predictors cause problems:
- The variance of all coefficients tends to increase, sometimes dramatically

- Interpretations become hazardous --- when X; changes, everything else changes.

fefsh A 4 ie 21
» School of Dzla Science
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Multiple Linear Regression

Sec 3.2 of “The Elements of Statistical Learning”

p
= (X1, X2, %), f(X)=PBo+ Y X;5;.
71=1

to minimize the RSS() = 2(i-
residual sum of
squares:

RSS(B) = (y — XB)" (y — XB).

ORSS
s

9°RSS

oposT

Least squares N

]

=1

= —2X" (y — XB)

— 9XTX.

XT(y —XB3) =0
A= (XTX)"1xXTy.

v =X3=XXTX)"'XTy,

]
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Geometric interpretation.




Multiple Linear Regression

Sec 3.2 of “The Elements of Statistical Learning”

p
= (X1, Xo,...,X,), f(X)=50+ZXj5j,
71=1
Least squares N y
to minimize the RSS(8) = ) (wi- :
residual sum of N !
squares: - ;( ~ o - waﬁj) . :
RSS(B) = (y — XB)" (y — XB). :
ORSS ! X5
o3 — _QXT(Y — Xﬁ) : )
H2RSS i :
5505T = 9XTX.
y
X" (y —XpB)=0 -
X1
3= (XTX)"'xTy. Geometric interpretation.

v = X3 =KXXTX)"' Xy,

Projection (Hat) matrix: H = X(X7X)"1XT7

]
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Multiple Linear Regression

Sec 3.2 of “The Elements of Statistical Learning”

p
XT = (X1, Xa,.... %), f(X)=Bo+ > X,B;.
j=1

Least squares N
to minimize the RSS(B) = ) (ui— f(x:))’ .
1=1 |
residual sum of N » ) :
squares: = Z; (v: = Bo— Zla:ijﬂj) . :
1= j= :
RSS(B) = (y — XB)T (y — Xp). :
HRSS ! o
a3 - _QXT(Y — X3) : 2
5°RSS |
_ 9XTX.
5303T e
r e y
X' (y—XpB)=0
X1
A= XTX)"XTy. Geometric interpretation.

y = X3 =X(X"X)"' Xy,

Projection (Hat) matrix: H = X(XTX)~1X7T

~
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Multiple Linear Regression

Sec 3.2 of “The Elements of Statistical Learning”

p
XT = (X1, Xa,.... %), f(X)=Bo+ > X,B;.
j=1

Least squares N
to minimize the RSS(B) = D (ui— f(2:))’ .
=1 [
residual sum of N p ) :
squares: = Z;(yi — Bo— Z:lm,-jﬂ,-) . :
1= 1= :
RSS(B) = (y — XB)" (y — XB). |
ORSS | X5
o3 —2X" (y — X) : 2
H2RSS |
— oXTX.
83037 : r
T -7 y
X' (y —XpB) =
X1
B =XTX)"'XTy. Geometric interpretation.

y = X3 =KXXTX)"'Xy,

Projection (Hat) matrix: H = X(XTX)~1X7T

f”*‘
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Multiple Linear Regression

Sec 3.2 of “The Elements of Statistical Learning”

p
XT = (X1, Xa,.... %), f(X)=Bo+ > X,B;.
j=1

Least squares N
to minimize the RSS(B) = ) (ui— f(z:))’ .
=1 [
residual sum of N p ) :
squares: = Z;(yi — Bo— Z;a:,-jﬁ,-) . :
1= 1= :
RSS(B) = (y — XB)" (v — XB). :
ORSS ' X5
a3 —2X" (y — X) : 2
H2RSS |
— 2XTX.
8303T : r
T e y
X' (y —Xp) =
X1
B =XTX)"'XTy. Geometric interpretation.
N

Projection (Hat) matrix: H = X(XTX)~1X7T

If“*‘
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Some Important Questions of Multiple Linear Regression

- Is at least one of the predictors X, X,..., X, useful in predicting the response?

(TSS — RSS) /p

F-statistic: p _— - o1
RSS/(n —p—1) pp

Hypothesis test
one parameter : t-test

two or more parameters: F-test

- How well does the model fit the data?

RSE = \/ LRSS, R2 =Cor(Y,Y)?
n—p-—1

p-values considered harmful (page 212-213, Murphy’s book)

‘-}"'r;‘.-’i‘?.t
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Summary of Linear Model

Optional subtitle

* Despite its simplicity, the linear model has distinct advantages in terms of Its
INnterpretabllity and often shows good predictive performance.

e (Generalizations of the Linear Model:

* Classification problems: logistic regression, support vector machines

* Non-linearity: kernel smoothing, splines and generalized additive models; nearest neighbor
methods.

* |nteractions: Tree-based methods, bagging, random forests and boosting (these also capture
non-linearities);

* Regularized fitting: Ridge regression and lasso;

‘.}'Lr;‘.-’lé‘ w
Y;'I vy - .’_ - ’ “' -
o - - fefer A #18 &
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Linear Model Selection and
Chap 2 = Regularisation

—ref: Chap 6.1, 6.2, [James,2013]

L| near 1.Subset Selection;

2.Shrinkage Methods

Regression(2) | k™




We need Alternatives instead of Least Squares

Optional subtitle

* Prediction Accuracy: especially when p > n, to control the variance. |[Example: homework]

* Model interpretabillity: By removing irrelevant features —that is, by setting the corresponding
coefficient estimates to zero— we can obtain a model that is more easily interpreted.

Three methods to perform feature selection:

: =
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We need Alternatives instead of Least Squares

Optional subtitle

* Model interpretabllity:

* Prediction Accuracy: especially when p > n, to control the variance. |[Example: homework]

By removing Irrelevant features —that is, by setting the corresponding
coefficient estimates to zero— we can obtain a model that is more easily interpreted.

Three methods to perform feature selection:

e Subset Selection. We identify a subset o

the response. We then fit a model using

: 1=
¥ Fudan-SDS Confidential - Do Not Distribute
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We need Alternatives instead of Least Squares

Optional subtitle

* Prediction Accuracy: especially when p > n, to control the variance. |[Example: homework]

* Model interpretabillity: By removing irrelevant features —that is, by setting the corresponding
coefficient estimates to zero— we can obtain a model that is more easily interpreted.

Three methods to perform feature selection:

e Subset Selection. We identify a subset of the p predictors that we believe to be related to

the response. We then fit a model using least squares on the reduced set of variables.

* Shrinkage. We fit a model involving all p predictors, but the estimated coefficients are
shrunken towards zero relative to the least squares estimates. This shrinkage (also known
as regularization) has the effect of reducing variance and can also perform variable
selection.
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We need Alternatives instead of Least Squares

Optional subtitle

* Prediction Accuracy: especially when p > n, to control the variance. |[Example: homework]

* Model interpretabillity: By removing irrelevant features —that is, by setting the corresponding
coefficient estimates to zero— we can obtain a model that is more easily interpreted.

Three methods to perform feature selection:

e Subset Selection. We identify a subset of the p predictors that we believe to be related to

the response. We then fit a model using least squares on the reduced set of variables.

* Shrinkage. We fit a model involving all p predictors, but the estimated coefficients are
shrunken towards zero relative to the least squares estimates. This shrinkage (also known
as regularization) has the effect of reducing variance and can also perform variable
selection.

* Dimension Reduction. We project the p predictors into a M-dimensional sulbspace, where

M < p. This is achieved by computing M different linear combinations, or projections, of

the variables. Then these M projections are used as predictors to t a linear regression

model by least squares.
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Subset Selection — Best Subset Selection

also ref Chap 3.3 [Hastie 2011]

1.

Best Subset Selection

Let M denote the null model, which contains no
predictors. This model simply predicts the sample mean
for each observation.

. For k=1,2,...p:

(a) Fit all (?) models that contain exactly & predictors.
(b) Pick the best among these (f) models, and call 1t M. Here
best 1s defined as having the smallest RSS, or equivalently

largest RZ.
Select a single best model from among My, ..., M, using
cross-validated prediction error, €, (AIC), BIC, or
adjusted R*.

-
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Stepwise Selection

e For computational reasons, best subset selection cannot be
applied with very large p. Why not?

o Best subset selection may also suffer from statistical
problems when p is large: larger the search space. the
higher the chance of finding models that look good on the
training data, even though they might not have any
predictive power on future data.

e Thus an enormous search space can lead to overfitting and
high variance of the coefiicient estimates.

e For both of these reasons, stepwise methods, which explore
a far more restricted set of models, are attractive
alternatives to best subset selection.
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Forward Stepwise Selection

Forward stepwise selection begins with a model containing no predictors, and then adds
predictors to the model, one-at-a-time, until all of the predictors are in the model.

1. Let Mg denote the null model, which contains no
predictors.
2. For k=0,....,p—1:
2.1 Consider all p — k£ models that augment the predictors in
M. with one additional predictor.
2.2 Choose the best among these p — k models, and call it
Mp1. Here best is defined as having smallest RSS or
highest R?.
3. Select a single best model from among My, ..., M, using
cross-validated prediction error, C),, (AIC), BIC, or
adjusted R?.

"-i
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Backward Stepwise Selection

Backward stepwise selection begins with the full least squares model containing all p
predictors, and then iteratively removes the least useful predictor, one-at-a-time.

1. Let M, denote the full model, which contains all p
predictors.

DNO
T
O
r—1
o
|
J
J
|
—
—

2.1 Consider all £ models that contain all but one of the
predictors in M., for a total of £ — 1 predictors.

2.2 Choose the best among these £ models, and call it M, _1.
Here best is defined as having smallest RSS or highest R?.

3. Select a single best model from among My, ..., M, using

/ /

cross-validated prediction error, C, (AIC), BIC, or
adjusted R?.
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Choosing the Optimal Model

1, AlC, BIC, Cp, and adjusted R2;

* C, AlC, and BIC all have rigorous theoretical justifications
o TZIRIEX] EEANMME K

2, Cross-Validation.

* Cross Validation has an advantage relative to AlC, BIC, Cp, and adjusted R2, in that it provides

a direct estimate of the test error, and makes fewer assumptions about the true underlying
model.

» FEBECHHFEIAEN AV,
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Shrinkage Methods(1)

* Ridge Regression

2
n p p p

2\ vi—Bo=D Bimiy | +A) B =RSS+X) B}

=1 j=1 j=1 j=1
where A > 0 1s a tuning parameter, to be determined
separately.

* Lasso
2
n P p p
(yi — 5() — Zﬁsz]) —+ )\Z |BJ‘ — RSS - AZ ‘,8]|
1=1 J=1 =1 j=1
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Shrinkage Methods in Matrix Form

RS
NS
R
]
an
uy

argmin [| Y — X3 [|3 +A || B ||

5 q=10.5 g =1 g2 ny

| B llo=tio (B) 1 o (B) B

18l = /S0, 8,2

1
Note: (1) tuning the parameter A is very important. P :

| Bllg={ D18l
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Shrinkage Methods in Matrix Form

AN I
axgmin | Y — X33 47 6, NN

@ g=05 Sy ny

g=0, Lo-norm; —> finding the minimiser is NP-hard computational problem. (the EqQ. is nonconvex).

uy

 |o-norm has closed form solution [1].

e |tis defined in Eq(6.10) of textbook. I.e.,

B |lo=tio (8), #stands for cardinality; o (8) is the support of £

1Bl = /S0, Bi%.

1
Note: (1) tuning the parameter A is very important. P :

| Bllg={ D18l
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Shrinkage Methods in Matrix Form

AN I
axgmin | Y — X33 47 6, NN

@ g=05 Sy ny

g=0, Lo-norm; —> finding the minimiser is NP-hard computational problem. (the EqQ. is nonconvex).

uy

 |o-norm has closed form solution [1].

e |tis defined in Eq(6.10) of textbook. I.e.,

| B |lo=tio (B), fstands for cardinality; o (8) is the support of S
g<1, hard-thresholding

1Bl = /S0, Bi%.

1
Note: (1) tuning the parameter A is very important. P :

| Bllg={ D18l
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Shrinkage Methods in Matrix Form

AN I
axgmin | Y — X33 47 6, NN

@ g=05 Sy ny

g=0, Lo-norm; —> finding the minimiser is NP-hard computational problem. (the EqQ. is nonconvex).

uy

 |o-norm has closed form solution [1].

e |tis defined in Eq(6.10) of textbook. I.e.,

| B |lo=tio (B), fstands for cardinality; o (8) is the support of S
g<1, hard-thresholding

g=1, Ls-norm —> Lasso (convex), a.k.a., soft-thresholding.

1Bl = /S0, Bi%.

1
Note: (1) tuning the parameter A is very important. P :

| Bllg={ D18l
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Shrinkage Methods in Matrix Form

AN I
axgmin | Y — X33 47 6, NN

@ g=05 Sy ny

g=0, Lo-norm; —> finding the minimiser is NP-hard computational problem. (the EqQ. is nonconvex).

uy

 |o-norm has closed form solution [1].

e |tis defined in Eq(6.10) of textbook. I.e.,

| B |lo=tio (B), fstands for cardinality; o (8) is the support of S
g<1, hard-thresholding

g=1, Li-norm —> Lasso (convex), a.k.a., soft-thresholding.

0=2, L2-norm —> Ridge Regression (convex) ||3]le = \/Z =1 32,

1
Note: (1) tuning the parameter A is very important. P :

| Bllg={ D18l
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Shrinkage Methods in Matrix Form

N[
NPAW

q—2 q—A41

uy

AN

Argmin | Y = X8z +X ] B llq

g=0, Lo-norm; —> finding the minimiser is NP-hard computational problem. (the EqQ. is nonconvex).
 |o-norm has closed form solution [1].

e |tis defined in Eq(6.10) of textbook. I.e.,

| B |lo=tio (B), fstands for cardinality; o (8) is the support of S

g<1, hard-thresholding

_ g<=1 used for outlier detection [2,3].
g=1, Li-norm —> Lasso (convex), a.k.a., soft-thresholding.

0=2, L2-norm —> Ridge Regression (convex) ||3]le = \/2§:1 32,

q

Note: (1) tuning the parameter A is very important.

p
| B llg= | D_ 16’
1=1

1] Mila Nikolova, Description of the minimizers of least squares regularized with 20-norm. Uniqueness of the global minimizer, SIAM J. IMAGING SCIENCE 2013.

2] Yiyuan She, and Art B. Owen, Ouitlier Detection Using Nonconvex Penalized Regression, 2011. Journal of the American Statistical Association

3] Yanwei Fu et al. Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2016
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Reqgularized Least Squares

Bo B2 . . . . .
} ridge regression has a circular constraint with

no sharp points, this intersection will not
‘ generally occur on an axis, and so the ridge
regression coefficient estimates will be
exclusively non-zero.
B, B, However, the lasso constraint has corners at

each of the axes, and so the ellipse will OFFEN
intersect the constraint region at an axis.




Credit Data Example of Ridge regression
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5(N) = argmin | Y — X5 3+ 5

Therefore, it is best to apply ridge regression after estimates as the left-hand panel, but instead of displaying
A on the x-axis, we now display Hd 115/]|3]|2, where /3

denotes the vector of least squares coefficient estimates.

The right-hand panel displays the same ridge coeflicient

standardizing the predictors, using the formula

1 | - e
n 2uim(Tij — 25)

-
lf . ] . .
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Credit

100 200 300 400

Standardized Coefficients
0

-200

However, in the case of the lasso, the L1 penalty has the effect of forcing some of the coefficient

Data
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Example of Lasso

Standardized Coefficients
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-100 O
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I

.....

| —— Income
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I Rating
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| | I I | I
0.0 0.2 0.4 0.6 0.8 1.0
18X 111/118l;

estimates to be exactly equal to zero when the tuning parameter is sufficiently large.
much like best subset selection, the lasso performs variable selection.

We say that the lasso yields sparse models | that is, models that involve only a subset of the variables.

-
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| asso for Outlier Detection by Checking Regularisation Path

Degrees of Freedom
synthetic dataset: outlies(red); good observations(blue) 12
5 T T T T T * 2 3/5
L ¥ 39
s 312
- . = 333
4 . 334
3t : T
0.5 -
2 i i 2]
£
@
* (V]
* g Or
r ¥ 1 VY
DU
or ‘ 38
L ue
b = : 1
-15
2 I* 1 1 1 1 367
-1 0 1 2 3 4 5 | ! ! ! - ! I
-85 -8 -7.5 -7 —6.5 -6 -5.5

Log Lamkda

Red lines & red points indicate outliers; Blue lines & blue points are inliers. Figures from [3].

[3] Yanwei Fu, De-An Huang, Leonid Sigal, Robust Classification by Pre-conditioned LASSO and Transductive Diffusion Component Analysis,http://arxiv.org/abs/1511.06340
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Alternatives to Squared Error

Huber M-estimator:
min Jh(@) — ,0)\(50@ — Y)
(14)

where the Huber’s loss function py(x) is defined as

(z) = x? /2, if |2 <\
PAUEI= Na| = A\2/2, if |2 > A

=

=

A=
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Gradient Checking

Optional subtitle

» When implementing the gradient computation for machine
learning models, it's often difficult to know if our
implementation of f and Vf is correct.

» We can use finite-differences approximation to the gradient to
help:

ﬁ ~ f((917°°°?0i+€:°”70n))_f((917”"0i_€’°°°’9n))
00 2¢€

Why don’t we always just use the finite differences approximation?

» slow: we need to recompute f twice for each parameter in our
model.

» numerical Issues

=)=
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| earning Rate

loss

ol i e Stopping Rules of Optimisation Algorithms

high learning rate

» Change in objective function value is close to zero:
|f(9t+]_) — f(@t)l < €

» Gradient norm is close to zero: ||Vof|| < ¢

good learning rate

epoch » Validation error starts to increase (this is called early stopping)

Good Learning Rate e

=
/h.-‘:-.-‘.-! /7% -
\\{ﬁ N7

Large Learning Rate




Estimating test error: two approaches
Optional subtitle

e We can indirectly estimate test error by making an
adjustment to the training error to account for the bias due
to overfitting.

e We can directly estimate the test error, using either a
validation set approach or a cross-validation approach, as
discussed in previous lectures.

e We illustrate both approaches next.

Cp, AIC, BIC, and Adjusted R2

e 'These techniques adjust the training error for the model
size, and can be used to select among a set of models with
different numbers of variables.

e The next figure displays C,, BIC, and adjusted R* for the
best model of each size produced by best subset selection
on the Credit data set.

Gl A8 212
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Detalls

Optional subtitle

o Mallow’s Cy:

1
Cp = — (RSS + 2d67) , 1
P ( +2d57) BIC = — (RSS + log(n)ds?) .
n
where d is the total # of parameters used and 62 is an

estimate of the variance of the error € associated with each

| e Like C),, the BIC will tend to take on a small value for a
response measurement.

model with a low test error, and so generally we select the
model that has the lowest BIC value.

e Notice that BIC replaces the 2dé* used by C), with a
AlC = —2log L +2-d log(n)dé? term, where n is the number of observations.

e The A/C criterion is defined for a large class of models fit
by maximum likelihood:

e Since logn > 2 for any n > 7, the BIC statistic generally
places a heavier penalty on models with many variables,
and hence results in the selection of smaller models than
C)p. See Figure on slide 19.

where L 1s the maximized value of the likelihood function
for the estimated model.

e In the case of the linear model with Gaussian errors,

maximum likelihood and least squares are the same thing,
and C), and AIC are equivalent. Prove this.

-
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Adjusted R?

For a least squares model with d variables, the adjusted R?
statistic i1s calculated as

RSS/(n —d —1)
TSS/(n — 1)

where T'SS is the total sum of squares.

Unlike €, AIC, and BIC, for which a small value indicates

a model with a low test error, a large value of adjusted R?
indicates a model with a small test error.

Adjusted R* =1

Maximizing the adjusted R? is equivalent to minimizing
nf_{csﬁl. While RSS always decreases as the number of
variables in the model increases, nf_{(sj’il may increase or
decrease, due to the presence of d in the denominator.
Unlike the R? statistic, the adjusted R? statistic pays a
price for the inclusion of unnecessary variables in the
model. See Figure on slide 19.
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Maximum Likelihood Estimation

Maximum likelihood estimate (MLE) in an abstract setting:
— We have a dataset ‘D’

— We want to pick a model ‘h’ from among set of models H.

— We define the likelihood as a probability density p(D | h).

— We choose the model ‘h’ that maximizes the likelihood:

lh= argmax P(Dl h) /

L_J‘d /

— If the data consists of ‘n’ IID sa mples ‘D/, then we equivalently have:

L s,nu) nce indepankesce  imples p(OD )7 48 Viaximum a Posteriori (MAP) Estimation

-

— MLE has appealing properties as n -> oo (take STAT 560/561)

imum a posteriori (MAP) estimate maximizes reverse:

O\r%mav’ P(ffa | D)

W e H

* Model is a random variable, and we need to find most likely model.
* Using Bayes’ rule, we have 'P(N ()= pLD ’) (h) ¢ f(D A)r[k}

()

or (’W\AK ('l/\[D/ <:—> QNW\?X (D”l) U\)
AT et =0

/"’ CT‘( °r ](u[ll’ouc[ 2 riey”

* Prior p(h) is ‘belief’ that ‘h’ is the correct model before seeing data:

-
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