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Why the name

We will mainly discuss semi-supervised classification.
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Intuition understanding
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There are 2 labeled points (the triangle and the cross) and 100 unlabeled points. The global optimum of S3VM 
correctly identifies the decision boundary (black line).

This figure comes from Chapelle et al. “Optimization Techniques for Semi-Supervised Support Vector Machines”, JMLR 2007.
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Unfortunately, this is not the case, yet.

Not until recently,  “Safe Semi-supervised learning”,  
Yu-Feng Li and Zhi-Hua Zhou. Towards making unlabeled data never hurt. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 2014.
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• Points in the same cluster likely to be of the same class; 
• Decision line should lie in a low-density region.

Guess the name? 
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• Points in the same cluster likely to be of the same class; 
• Decision line should lie in a low-density region.

Guess the name? 

Cluster Assumption
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• The data lie approximately on a manifold of much lower dimension than the input space. 
• Swiss Roll

Guess the name? 
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Assumption and Intuitions 

• The data lie approximately on a manifold of much lower dimension than the input space. 
• Swiss Roll

Guess the name? 

Manifold Assumption
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If two points x1, x2 in a high-density region are close, then so should be the corresponding outputs y1, y2.

Guess the name? 

Points which are close to each other are more likely to share a label. This is 
also generally assumed in supervised learning and yields a preference for 
geometrically simple decision boundaries. In the case of semi-supervised 
learning, the smoothness assumption additionally yields a preference for 
decision boundaries in low-density regions, so that there are fewer points 
close to each other but in different classes.
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Assumption and Intuitions 

If two points x1, x2 in a high-density region are close, then so should be the corresponding outputs y1, y2.

Guess the name? 

Smoothness AssumptionPoints which are close to each other are more likely to share a label. This is 
also generally assumed in supervised learning and yields a preference for 
geometrically simple decision boundaries. In the case of semi-supervised 
learning, the smoothness assumption additionally yields a preference for 
decision boundaries in low-density regions, so that there are fewer points 
close to each other but in different classes.
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• Self-training 
• Co-training -Multi-view Algorithm 
• Graph-based SVM  
• Semi-supervised SVM (S3VM) 



Self-training
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The bag-of-word representation of images



Fudan-SDS Confidential  -  Do Not Distribute

Self-training example: image categorization



Fudan-SDS Confidential  -  Do Not Distribute

Self-training example: image categorization



Fudan-SDS Confidential  -  Do Not Distribute

Comments on Self-training
Advantages of self-training

Disadvantages of self-training
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Incidence matrix
The unoriented incidence matrix (or simply incidence matrix) of an undirected graph is a n × m 
matrix B, where n and m are the numbers of vertices and edges respectively, such that Bi,j = 1 if the 
vertex vi and edge ej are incident and 0 otherwise.

For example the incidence matrix of the undirected graph shown on the right is a matrix consisting of 4 rows 
(corresponding to the four vertices, 1-4) and 4 columns (corresponding to the four edges, e1-e4):

https://en.wikipedia.org/wiki/Matrix_(math)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
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Harmonic function f

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions.  Xiaojin Zhu, Zoubin Ghahramani, John 
Lafferty.  ICML-2003.   Awarded the classic paper prize in ICML 2013
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Label Propagation

Zhou D.-Y. Learning with Local and Global Consistency, NIPS 2004.
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Min-cuts

In graph theory, a minimum cut of a graph is a cut (a partition of the vertices of a graph into two disjoint 
subsets that are joined by at least one edge) that is minimal in some sense.

Max-flow min-cut theorem:

The cut in a flow network that 
separates the source and sink vertices 
and minimizes the total weight on the 
edges that are directed from the 
source side of the cut to the sink side 
of the cut. As shown in the max-flow 
min-cut theorem, the weight of this cut 
equals the maximum amount of flow 
that can be sent from the source to the 
sink in the given network.

Karger's Min Cut Algorithm

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Cut_(graph_theory)
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
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Min-cuts
Graph-cut 
Normalised Cut

In graph theory, a minimum cut of a graph is a cut (a partition of the vertices of a graph into two disjoint 
subsets that are joined by at least one edge) that is minimal in some sense.

Max-flow min-cut theorem:

The cut in a flow network that 
separates the source and sink vertices 
and minimizes the total weight on the 
edges that are directed from the 
source side of the cut to the sink side 
of the cut. As shown in the max-flow 
min-cut theorem, the weight of this cut 
equals the maximum amount of flow 
that can be sent from the source to the 
sink in the given network.

Karger's Min Cut Algorithm

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Cut_(graph_theory)
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem


Fudan-SDS Confidential  -  Do Not Distribute

Karger's  minimum cut  algorithm

For his dissertation "Random Sampling in Graph Optimization Problems."

David Karger 
ACM Doctoral Dissertation Award 
United States – 1994
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(Transductive) SVM
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S3VM [Joachims98]
• Suppose we believe target separator goes through low density regions of the space/large margin. 
• Aim for separator with large margin w.r.t labeled and unlabeled data. (L+U)
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S^3VM
SVM
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