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Unsupervised LearningUnsupervised Learning

Supervised learning algorithms have a clear goal: produce desired outputs for
given inputs

Goal of unsupervised learning algorithms (no explicit feedback whether
outputs of system are correct) less clear:

I Reduce dimensionality
I Find clusters
I Model data density
I Find hidden causes

Key utility

I Compress data
I Detect outliers
I Facilitate other learning
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Unsupervised LearningUnsupervised Learning

Unsupervised vs Supervised Learning:

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1, X2, . . . , Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1, X2, . . . , Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1, X2, . . . , Xp. We are not
interested in prediction, because we do not have an
associated response variable Y .
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The Goals of Unsupervised Learning
Major types

Primary problems, approaches in unsupervised learning fall into three classes:

1. Dimensionality reduction: represent each input case using a small
number of variables (e.g., principal components analysis, factor
analysis, independent components analysis)

2. Clustering: represent each input case using a prototype example (e.g.,
k-means, mixture models)

3. Density estimation: estimating the probability distribution over the
data space
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The Challenge of Unsupervised Learning
The Challenge of Unsupervised Learning

• Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

• But techniques for unsupervised learning are of growing
importance in a number of fields:

• subgroups of breast cancer patients grouped by their gene
expression measurements,

• groups of shoppers characterized by their browsing and
purchase histories,

• movies grouped by the ratings assigned by movie viewers.
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Another advantage
Another advantage

• It is often easier to obtain unlabeled data — from a lab
instrument or a computer — than labeled data, which can
require human intervention.

• For example it is difficult to automatically assess the
overall sentiment of a movie review: is it favorable or not?
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Principal Components Analysis
Principal Components Analysis

• PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

• Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.
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Manifold

Figure: Find an affine space to approximate data variation in PCA/MDS.
(b) Swiss Roll data distributed on a nonlinear 2-D submanifold in
Euclidean space R3. Our purpose is to capture an intrinsic coordinate
system describing the submanifold.
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Principal Components Analysis: detailsPrincipal Components Analysis: details

• The first principal component of a set of features
X1, X2, . . . , Xp is the normalized linear combination of the
features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

that has the largest variance. By normalized, we mean that∑p
j=1 φ

2
j1 = 1.

• We refer to the elements φ11, . . . , φp1 as the loadings of the
first principal component; together, the loadings make up
the principal component loading vector,
φ1 = (φ11 φ21 . . . φp1)

T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.
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Principal Components Analysis: detailsPCA: example
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The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates
the first principal component direction, and the blue dashed
line indicates the second principal component direction.
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Principal Components Analysis: detailsComputation of Principal Components

• Suppose we have a n× p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

• We then look for the linear combination of the sample
feature values of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

∑p
j=1 φ

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for
any values of φj1). Hence the sample variance of the zi1
can be written as 1

n

∑n
i=1 z

2
i1.
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Principal Components Analysis: detailsComputation: continued

• Plugging in (1) the first principal component loading vector
solves the optimization problem

maximize
φ11,...,φp1

1

n

n∑

i=1




p∑

j=1

φj1xij




2

subject to

p∑

j=1

φ2j1 = 1.

• This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

• We refer to Z1 as the first principal component, with
realized values z11, . . . , zn1
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PCA: example
Geometry of PCA

• The loading vector φ1 with elements φ11, φ21, . . . , φp1
defines a direction in feature space along which the data
vary the most.

• If we project the n data points x1, . . . , xn onto this
direction, the projected values are the principal component
scores z11, . . . , zn1 themselves.
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Further principal componentsFurther principal components

• The second principal component is the linear combination
of X1, . . . , Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2
take the form

zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip,

where φ2 is the second principal component loading vector,
with elements φ12, φ22, . . . , φp2.
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Further principal componentsFurther principal components: continued

• It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be
orthogonal (perpendicular) to the direction φ1. And so on.

• The principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of right singular vectors of the matrix X,
and the variances of the components are 1

n times the
squares of the singular values. There are at most
min(n− 1, p) principal components.
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ClusteringClustering

Grouping N examples into K clusters one of canonical problems in
unsupervised learning

Motivations: prediction; lossy compression; outlier detection

We assume that the data was generated from a number of different classes.
The aim is to cluster data from the same class together.

I How many classes?
I Why not put each datapoint into a separate class?

What is the objective function that is optimized by sensible clusterings?
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ClusteringClustering

• Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

• We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

• It make this concrete, we must define what it means for
two or more observations to be similar or different.

• Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.
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ClusteringPCA vs Clustering

• PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance.

• Clustering looks for homogeneous subgroups among the
observations.
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Two clustering methods

K-means clustering method: we seek to partition the observations
into a pre-specied number of clusters. We introduce
K-means and soft-Kmeans here.

hierarchical clustering method: we do not know in advance how
many clusters we want; in fact, we end up with a
tree-like visual representation of the observations,
called a dendrogram, that allows us to view at once
the clusterings obtained for each possible number of
clusters, from 1 to n.
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The K-means clustering algorithm
The K-means algorithm

Assume the data lives in a Euclidean space.

Assume we want k classes/patterns

Initialization: randomly located cluster centers

The algorithm alternates between two steps:
I Assignment step: Assign each datapoint to the closest cluster.
I Refitting step: Move each cluster center to the center of gravity of the

data assigned to it.

Assignments Refitted 
means 
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K-means Objectives&Details
K-means Objective

Objective: minimize sum squared distance of datapoints to their assigned
cluster centers

min
{m},{r}

E ({m}, {r}) =
∑

n

∑

k

r
(n)
k ||mk − x(n)||2

s.t.
∑

k

r
(n)
k = 1,∀n, r

(n)
k ∈ {0, 1},∀k, n

Optimization method is a form of coordinate descent (”block coordinate
descent”)

I Fix centers, optimize assignments (choose cluster whose mean is
closest)

I Fix assignments, optimize means (average of assigned datapoints)
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K-means Objectives&Details
K-means

Initialization: Set K means {mk} to random values

Assignment: Each datapoint n assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

and Responsibilities (1 of k encoding)

r
(n)
k = 1←→ k̂(n) = k

Update: Model parameters, means, are adjusted to match sample means of
datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)

∑
n r

(n)
k

Repeat assignment and update steps until assignments do not change
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Figure from Bishop.
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K-means for Image Segmentation and Vector Quantization:

Figure from Bishop.
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Questions about K-means
Questions about K-means

Why does update set mk to mean of assigned points?

Where does distance d come from?

What if we used a different distance measure?

How can we choose best distance?

How to choose K?

How can we choose between alternative clusterings?

Will it converge?

Hard cases – unequal spreads, non-circular spreads, inbetween points
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Why K-means converges
Why K-means converges

Whenever an assignment is changed, the sum squared distances of
datapoints from their assigned cluster centers is reduced.

Whenever a cluster center is moved the sum squared distances of the
datapoints from their currently assigned cluster centers is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima
Local Minima

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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Soft K-means Algorithm
Soft k-means

Instead of making hard assignments of datapoints to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I What happens to our convergence guarantee?
I How do we decide on the soft assignments?
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Soft K-means Algorithm
Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Assignment: Each datapoint n given soft ”degree of assignment” to each
cluster mean k, based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

Update: Model parameters, means, are adjusted to match sample means of
datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)

∑
n r

(n)
k

Repeat assignment and update steps until assignments do not change
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Hierarchical Clustering
Hierarchical Clustering

• K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

• Hierarchical clustering is an alternative approach which
does not require that we commit to a particular choice of
K.

• In this section, we describe bottom-up or agglomerative
clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.
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Visual Saliency Attention in a bottom-up way

Figure: Visual Saliency in a bottom-up way (itti’s “ a model of
saliency-based visual attention for rapid scene analysis” IEEE TPAMI
1998) 23/50



Hierarchical Clustering: the ideaHierarchical Clustering: the idea
Builds a hierarchy in a “bottom-up” fashion...
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Hierarchical Clustering AlgorithmHierarchical Clustering Algorithm
The approach in words:

• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.
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An Example of Hierarchical Clustering
An Example

−6 −4 −2 0 2
−

2
0

2
4

X1

X
2

45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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An Example of Hierarchical Clustering
Application of hierarchical clustering
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An Example of Hierarchical Clustering
Details of previous figure

• Left: Dendrogram obtained from hierarchically clustering
the data from previous slide, with complete linkage and
Euclidean distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in different colors.

• Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in different colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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Choice of Dissimilarity Measure
Choice of Dissimilarity Measure

• So far have used Euclidean distance.
• An alternative is correlation-based distance which considers

two observations to be similar if their features are highly
correlated.

• This is an unusual use of correlation, which is normally
computed between variables; here it is computed between
the observation profiles for each pair of observations.
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Conclusion
Conclusions

• Unsupervised learning is important for understanding the
variation and grouping structure of a set of unlabeled data,
and can be a useful pre-processor for supervised learning

• It is intrinsically more difficult than supervised learning
because there is no gold standard (like an outcome
variable) and no single objective (like test set accuracy)

• It is an active field of research, with many recently
developed tools such as self-organizing maps, independent
components analysis and spectral clustering.
See The Elements of Statistical Learning, chapter 14.
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Gaussian Mixture Model (GMM)
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A generative view of clustering
A generative view of clustering

Last time: hard and soft k-means algorithm

Today: statistical formulation of clustering → principled, justification for
updates

We need a sensible measure of what it means to cluster the data well.

I This makes it possible to judge different methods.
I It may help us decide on the number of clusters.

An obvious approach is to imagine that the data was produced by a
generative model.

I Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed.
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Gaussian mixture modelGaussian mixture model

A Gaussian mixture distribution can be written as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

with πk the mixing coefficients
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Gaussian mixture modelVisualizing a Mixture of Gaussians
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Gaussian mixture modelGaussian mixture model

A Gaussian mixture distribution can be written as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

with πk the mixing coefficients

Its a density estimator

Where have we already use a density estimator?
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Fitting a mixture of Gaussians
Fitting a mixture of Gaussians

Optimization uses the Expectation Maximization algorithm, which alternates
between two steps:

1. E-step: Compute the posterior probability that each Gaussian generates
each datapoint (as this is unknown to us)

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.
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Latent Variable ModelsLatent Variable Models

Some model variables may be unobserved, either at training or at test time,
or both

If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets

Variables which are always unobserved are called latent variables, or
sometimes hidden variables

We may want to intentionally introduce latent variables to model complex
dependencies between variables – this can actually simplify the model

Form of divide-and-conquer: use simple parts to build complex models

In a mixture model, the identity of the component that generated a given
datapoint is a latent variable
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Latent Variable ModelsLatent variables in mixture models

A Gaussian mixture distribution can be written as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

Let zk be a K-dimensional binary random variable z having a 1-of-K encoding

zk ∈ {0, 1},
∑

k

zk = 1

Joint distribution
p(x, z) = p(x|z)p(z)

The marginal distribution over z is specified in terms of the mixing
coefficients

p(zk = 1) = πk , with 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1
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Latent Variable ModelsLatent variables in mixture models

Because z uses a 1-of-K representation, we can also write

p(z) =
K∏

k=1

πzk
k

The conditional distribution of x given a particular value for z is a Gaussian

p(x|z) =
K∏

k=1

N (x|µk ,Σk)zk

The marginal can then be computed as

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN (x|µk ,Σk)

Every data point has its own latent variable z(n)
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Latent Variable ModelsResponsabilities

Conditional probability (using Bayes rule) of z given x

γ(zk) = p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

p(x)

=
p(zk = 1)p(x|zk = 1)

∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk ,Σk)

∑K
j=1 πjN (x|µj ,Σj)

γ(zk) can be viewed as the responsibility
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Maximum Likelihood
Maximum Likelihood

Maximum likelihood maximizes

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

w.r.t Θ = {πk , µk ,Σk}
Problems:

I Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point

I Identifiability: Solution is up to permutations

How would you optimize this?

Can we have a closed form update?

Don’t forget to satisfy the constraints on πk
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Objective: Expected Complete Data Likelihood
Objective: Expected Complete Data Likelihood

Maximum likelihood maximizes

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

Hard to maximize (log-)likelihood of data directly

General problem: sum inside the log

ln p(x|Θ) = ln
∑

z

p(x, z|Θ)

Urtasun & Zemel (UofT) CSC 411: 13-MoG Nov 2, 2015 14 / 31

35/50



Expectation Maximization
Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ(z
(n)
k ) = p(zk = 1|x)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters
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EM AlgorithmM-Step (mean)

∂ ln p(X|π, µ,Σ)

∂µk
= 0 =

N∑

n=1

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)︸ ︷︷ ︸

γ(z
(n)
k

)

Σ−1
k (x(n) − µk)

This gives

µk =
1

Nk

N∑

n=1

γ(z
(n)
k )x(n)

with Nk the effective number of points in cluster k

Nk =
N∑

n=1

γ(z
(n)
k )

We just take the center-of gravity of the data that the Gaussian is responsible for

Just like in K-means, except the data is weighted by the posterior probability of
the Gaussian.

Guaranteed to lie in the convex hull of the data (Could be big initial jump)
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EM AlgorithmM-Step (variance, mixing coefficients)

We can get similarly expression for the variance

Σk =
1

Nk

N∑

n=1

γ(z
(n)
k )(x(n) − µk)(x(n) − µk)T

We can also minimize w.r.t the mixing coefficients

πk =
Nk

N
, with Nk =

N∑

n=1

γ(z
(n)
k )

The optimal mixing proportion to use (given these posterior probabilities) is
just the fraction of the data that the Gaussian gets responsibility for.

Note that this is not a closed form solution of the parameters, as they

depend on the responsibilities γ(z
(n)
k ), which are complex functions of the

parameters

But we have a simple iterative scheme to optimize

Urtasun & Zemel (UofT) CSC 411: 13-MoG Nov 2, 2015 17 / 31

37/50



EM AlgorithmEM Algorithm

Initialize the means µk , covariances Σk and mixing coefficients πk

E-step: Evaluate the responsibilities

γ(zk) = p(zk = 1|x) =
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

M-step: Re-estimate the parameters

µk =
1

Nk

N∑

n=1

γ(z
(n)
k )x(n)

Σk =
1

Nk

N∑

n=1

γ(z
(n)
k )(x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑

n=1

γ(z
(n)
k )

Evaluate log likelihood and check for convergence

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

Continue looping
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An Alternative View of EM
An Alternative View of EM

Hard to maximize (log-)likelihood of data directly

General problem: sum inside the log

ln p(x|Θ) = ln
∑

z

p(x, z|Θ)

Complete data {x, z}, and x is the incomplete data

If we knew z , then easy to maximize (replace sum over k with just the k
where zk = 1)

Unfortunately we are not given the complete data, but only the incomplete.

Our knowledge about the latent variables is p(Z|X,Θold)

In the E-step we compute p(Z|X,Θold)

In the M-step we maximize w.r.t Θ

Q(Θ,Θold) =
∑

z

p(Z|X,Θold) ln p(X,Z|Θ)
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General EM Algorithm
General EM Algorithm

1. Initialize Θold

2. E-step: Evaluate p(Z|X,Θold)

3. M-step:
Θnew = arg max

Θ
Q(Θ,Θold)

where
Q(Θ,Θold) =

∑

z

p(Z|X,Θold) ln p(X,Z|Θ)

4. Evaluate log likelihood and check for convergence (or the parameters). If
not converged, Θold = Θ, Go to step 2
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How do we know that the updates improve things?
How do we know that the updates improve things?

Updating each Gaussian definitely improves the probability of generating the
data if we generate it from the same Gaussians after the parameter updates.

I But we know that the posterior will change after updating the
parameters.

A good way to show that this is OK is to show that there is a single function
that is improved by both the E-step and the M-step.

I The function we need is called Free Energy.
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Why EM converges
Why EM converges

Free energy F is a cost function that is reduced by both the E-step and the
M-step.

F = expected energy− entropy

The expected energy term measures how difficult it is to generate each
datapoint from the Gaussians it is assigned to. It would be happiest
assigning each datapoint to the Gaussian that generates it most easily (as in
K-means).

The entropy term encourages ”soft” assignments. It would be happiest
spreading the assignment probabilities for each datapoint equally between all
the Gaussians.
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Free Energy
Free Energy

Our goal is to maximize

p(X|Θ) =
∑

z

p(X, z|Θ)

Typically optimizing p(X|Θ) is difficult, but p(X,Z|Θ) is easy

Let q(Z) be a distribution over the latent variables. For any distribution
q(Z) we have

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

where

L(q,Θ) =
∑

Z

q(Z) ln

{
p(X,Z|Θ)

q(Z)

}

KL(q||p) = −
∑

Z

q(Z) ln

{
p(Z|X,Θ)

q(Z)

}
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More on Free Energy
More on Free Energy

Since the KL-divergence is always positive and have value 0 only if
q(Z ) = p(Z|X,Θ)

Thus L(q,Θ) is a lower bound on the likelihood

L(q,Θ) ≤ ln p(X|Θ)
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E-step and M-step
E-step and M-step

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

In the E-step we maximize w.r.t q(Z) the lower bound L(q,Θ)

Since ln p(X|θ) does not depend on q(Z), the maximum L is obtained when
the KL is 0

This is achieved when q(Z) = p(Z|X,Θ)

The lower bound L is then

L(q,Θ) =
∑

Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑

Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const

with the content the entropy of the q distribution, which is independent of Θ

In the M-step the quantity to be maximized is the expectation of the
complete data log-likelihood

Note that Θ is only inside the logarithm and optimizing the complete data
likelihood is easier
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Visualization of E-step
Visualization of E-step

The q distribution equal to the posterior distribution for the current
parameter values Θold , causing the lower bound to move up to the same
value as the log likelihood function, with the KL divergence vanishing.
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Visualization of M-step
Visualization of M-step

The distribution q(Z) is held fixed and the lower bound L(q,Θ) is
maximized with respect to the parameter vector Θ to give a revised value
Θnew . Because the KL divergence is nonnegative, this causes the log
likelihood ln p(X|Θ) to increase by at least as much as the lower bound does.
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Visualization of the EM Algorithm
Visualization of the EM Algorithm

The EM algorithm involves alternately computing a lower bound on the log
likelihood for the current parameter values and then maximizing this bound
to obtain the new parameter values. See the text for a full discussion.
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Summary: EM is coordinate descent in Free EnergyTerm–
Optimization

• The E-step maximizes F by finding the best distribution over
hidden configurations for each data point.

• The M-step holds the distribution fixed and maximizes F by
changing the parameters that determine the energy of a
configuration.
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Mixture of Gaussians vs. K-means
Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based on
the softmax of the squared Mahalanobis distance from each point to each
cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1
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