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ÏL�Ù�ÆS§Æ)U
Ýºµ

• Convex optimization �`)÷v�^�£KKT conditions¤

• XÛ¦)���Convex Optimization

• Lasso ����Convex Optimization ��
5�

2.1 Convex Optimization

Optimization problem �IO/ªµ

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , n,

hj(x) = 0, j = 1, . . . ,m.

XJ8I¼êÚØ�ª�å¼êÑ´à¼ê§�ª�å¼ê´�5¼ê§T`z¡�Convex

Optimization.

fi(αx+ βy) ≤ αfi(x) + βfi(y),

XJ α+ β = 1, α ≥ 0, β ≥ 0. ^ p∗ �Lþã¯K����"

�
â�µfeasible, optimal Úlocally optimal"

feasible: x is feasible, if x ∈ domf0 ¿�§÷v¤k��å"optimal: x is optimal, if x is

feasible, ¿�f0(x) = p∗. locally optimal: x is locally optimal, if there is an R > 0, ¦�x 3Û

Ü��Sµ

{z : ‖z − x‖2 ≤ R},

´e¡¯K��`)(optimal).

minimize(over z) f0(z)

subjectto fi(z) ≤ 0, i = 1, . . . , n,

hj(z) = 0, j = 1, . . . ,m,

‖z − x‖2 ≤ R.

½½½nnn1. Convex problem �ÛÜ�`)Ò´�Û�`)"(��)
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2.2 Duality

2.2.1 Lagrange dual problem

Lagrangian:

L(x, λ, ν) = f0(x) +

n∑
i=1

λifi(x) +

m∑
j=1

νjhj(x)

Lagrange dual function is defined as:

g(λ, ν) = inf
x∈D

L(x, λ, ν),

where D ´ f0(x) �½Â�§P� domf0.

5�µ

• g(λ, ν) is concave;

• Lower bound property: If λ � 0, then g(λ, ν) ≤ p∗.

Proof. Suppose x̄ is a feasible point. Then

L(x̄, λ, ν) ≤ f0(x̄).

Hence

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̄, λ, ν) ≤ f(x̄) ≤ p∗

The (Lagrange) dual problem:

maximize g(λ, ν)

subject to λ ≥ 0 (2.1)

Ï� g(λ, ν) ´�� concave function, ù´�� convex problem§Ø+�¯K´Ø´ convex

problem. PT¯K��`��d∗, @od∗ ´�Ð£�¤� lower bound, in some sense. T5�

¡� weak duality.

We refer to a pair (λ, ν) with λ � 0 and g(λ, ν) > −∞ as dual feasible.

2.2.2 Weak and strong duality

Weak duality: d∗ ≤ p∗
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• always holds

• can be used to find non-trivial lower bounds for difficult problems.

Example: Two-way Partitioning

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n. (2.2)

This is a non-convex problem and can be interpreted as a partition problem. Wij is the cost of

assigning i, j to the same set; −Wij is the cost of assigning to different sets.

Dual function:

g(v) = inf
x
xTWx+

∑
i

νi(x
2
i − 1)

= inf
x
xT [W + diag(v)]x− 1T ν

=

 −1T ν, W + diag(ν) < 0;

−∞, O.W.

g(ν) is a lower bound of p∗ for any ν. By taking ν = −λmin(W )1, we have p∗ ≥ nλmin(W ).

A better lower bound is given by the following convex optimization problem (SDP):

maximize −1T ν

subject to W + diag(ν) < 0. (2.3)

Strong duality: d∗ = p∗.

• does not always holds

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called constraint quali-

fications.

2.2.3 Slater’s constraint qualification

strong duality holds for a convex problem
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minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , n,

Am×px = b (2.4)

if it is strictly feasible, i.e.,

∃x ∈ int D : fi(x) < 0, i = 1, . . . , n, Ax = b

½½½nnn2. Slater’s constraint qualification guarantees strong duality for a convex problem.

½½½nnn3 (Separating hyperplane theorem). Suppose C and D are two convex sets that do not

intersect. Then there exists a 6= 0 and b such that aTx ≤ b, ∀x ∈ C and aTx ≥ b, ∀x ∈ D.

Proof. dy²�'�:3uü:µ1. 8I¼êÚ¤k��å¼ê´à¼ê¶2. �3S:§¦�

¤k��å¼êî�¤á"

We assume rank(A) = m and p∗ is finite (p∗ = −∞ is trivial).

Let A ⊆ Rn × Rm × R, A = {(u, v, t)|∃x ∈ D, fi(x) ≤ ui, i = 1, . . . , n;hj(x) = vj , j =

1, . . . ,m, f0(x) ≤ t}, where u = (u1, . . . , un) corresponds to the n inequality constraints, ν

corresponds to the m equality constraints and hj(x) = [Ax− b]j .

Obviously, A is a convex set. Define another convex set

B = {(0, 0, s) ∈ Rn × Rm ×R|s < p∗}.

We conclude that

A ∩ B = ∅.

To see this, suppose that (u, v, t) ∈ A ∩ B. Since (u, v, t) ∈ B, we have u = 0, v = 0, and t < p∗.

Since (u, v, t) ∈ A, there exists an x with fi(x) ≤ 0, i = 1, . . . , n;Ax− b = 0, and f0(x) ≤ t < p∗,

which is not impossible since p∗ is the optimal value of the primal problem.

By the separating hyperplane theorem, there exists (λ̃, ν̃, µ) 6= 0 and αR such that

λ̃Tu+ ν̃v + µt ≥ α,∀(u, v, t) ∈ A(1)

and

λ̃Tu+ ν̃v + µt ≤ α,∀(u, v, t) ∈ B(2)
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From (1), we conclude that λ̃ � 0 and µ � 0. (2) means µt ≤ α for all t < p∗. Hence µp∗ ≤ α.

Together with (1), we have for any x ∈ D,

n∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) + µf0(x) ≥ α ≥ µp∗.(3)

Now assume that µ > 0(later we will show that µ 6= 0). We divide (3) by µ to obtain

L(x, λ̃/µ, ν̃/µ) ≥ p∗

for all x ∈ D. By minimizing over x, we have g(λ, ν) ≥ p∗, where λ = λ̃/µ, ν = ν̃/µ. So

d∗ = maximizeg(λ, ν) ≥ p∗, By weak duality, we have d∗ ≤ p∗, so d∗ = p∗.

Now we show that µ 6= 0 (we will use the condition that ∃x ∈ intD which is strictly feasible).

Suppose that µ = 0. Then from (3), for all x ∈ D,

n∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) ≥ 0.

For x̃ which satisfies the Slater condition, we have

n∑
i=1

λ̃ifi(x) ≥ 0.

Since fi(x̃) < 0 and λ̃i ≥ 0, we conclude that λ̃ = 0. From (λ̃, ñu, µ) 6= 0, we have ν 6= 0. (3)

implies that ṽT (Ax−b) ≥ 0 for all x ∈ D. Since vT (Ax̃−b) = 0 and x̃ ∈ intD, there are points in

D with ṽT (Ax−b) < 0 unless AT ṽ = 0. This contradicts our assumption that rank(A) = m.

2.2.4 Complementary slackness

Suppose that the primal and dual optimal values are attained and equal. Let x∗ be a primal

optimal point and (λ∗, ν∗) be a dual optimal point.

f0(x∗) = g(λ∗, v∗)

= inf

f0(x) +

n∑
i=1

λ∗fix+
∑
j=1

mν∗hj(x)


≤ f0(x∗) +

n∑
i=1

λ∗i fi(x
∗) +

m∑
j=1

ν∗j hj(x
∗)

≤ f0(x∗),

from which, we have
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• x∗ minimizes L(x, λ∗, ν∗);

• λi × fi(x∗) = 0 (Complementary Slackness).

2.2.5 Karush-Kuhn-Tucker (KKT) conditions

The following four conditions are called KKT conditions (for a problem with differentiable fi,hj):

• primal constraints: fi(x) ≤ 0 and hj(x) = 0

• dual constraints: λ � 0

• complementary slackness: λifi(x) = 0

• gradient of Lagrangian w.r.t. x vanishes:

Of0(x) +

n∑
i=1

λiOfi(x) +

m∑
j=1

νjOhj(x) = 0

.

½½½nnn4 (Necessary). For any optimization problem with differentiable objective and constraint

functions for which strong duality obtains, any pair of primal and dual optimal points must

satisfy KKT conditions.

For a convex problem, KKT conditions are also sufficient.

½½½nnn5 (Sufficient). For any convex optimization problem with differentiable objective and con-

straint functions, any points that satisfy the KKT conditions are primal and dual optimal, and

have zero duality gaps.

Proof. Suppose x̃, λ̃, ν̃ satisfy the KKT conditions, then L(x, λ̃, ν̃) is convex in x and x̃ minimizes

L(x, λ̃, ν̃). So we have

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +

n∑
i=1

λ̃ifi(x̃) +

m∑
j=1

νjhj(x̃)

= f0(x̃).

Hence

f0(x̃) = g(λ̃, ν̃) ≤ d∗ ≤ p∗ ≤ f0(x̃),
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=⇒

d∗ = p∗ ≤ f0(x̃).

½½½nnn6 (Necessary and Sufficient.). If a convex optimization problem with differentiable objective

and constraint functions satisfies Slater’s condition, then KKT conditions provide necessary and

sufficient conditions for optimality: x is optimal if and only if there are (λ, ν) that, together with

x, satisfy the KKT conditions.

2.2.6 Subgradient

Recall basic inequality for convex differentiable function f :

f(y) ≥ f(x) + Of(x)T (y − x)

What if f is not differentiable?

½½½ÂÂÂ1. g is a subgradient of f (not necessarily convex) at x, if

f(y) ≥ f(x) + gT (y − x) for all y

.

• if f is convex, it has at least one subgradient at very point.

• if f is convex and differentiable, Of(x) is a subgradient of f at x.

½½½ÂÂÂ2. set of all subgradients of f at x is called the subdifferential of f at x, written as ∂f(x).

Recall for f convex, differentiable,

f(x∗) = inf
x
f(x)⇐⇒ 0 = Of(x),

generalization to nondifferentiable convex f :

f(x∗) = inf
x
f(x)⇐⇒ 0 ∈ ∂f(x∗),
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Proof.

f(x∗) ≤ f(y)⇐⇒ f(y) ≥ f(x∗) + 0T (y − x∗)⇐⇒ 0 ∈ ∂f(x∗).

KKT conditions: (1)(2)(3) the same; (4) changes to

0 ∈ Of0(x) +

n∑
i=1

λiOfi(x) +

m∑
j=1

νjOhj(x)

.

Some properties:

•

∂(αf) = α∂f

•

∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of sets) (��)

2.3 The Lasso and its duality

Let Y denote the vector of observed responses. X = (X1, . . . , Xp) be the n × p matrix. Xj is

the jth column of X. Let β ∈ Rp. The Lasso:

min
1

2
‖Y −Xβ‖22 + λ‖β‖1 (2.5)

⇔

minimize 1
2

∑n
i=1

(
yi −

∑n
j=1 xijβj

)2

subject to
∑p
j=1 |βj | ≤ t, (2.6)

for some t.

The Lagrangian is

L(β, λ) =
1

2
‖Y −Xβ‖22 + λ(

p∑
j=1

|βj | − t).

The dual function: g(λ) = infβ L(β, λ) = infβ
1
2‖Y −Xβ‖

2
2 + λ(

∑p
j=1 |βj | − t)
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If the strong duality holds, then we see that

d∗ = max
λ

g(λ) = g(λ∗) = inf
β

1

2
‖Y −Xβ‖22 + λ∗(

p∑
j=1

|βj | − t),

we conclude that (2.5) and (2.6) have the same solution.

½½½nnn7 (Strong duality). Strong duality of the Lasso problem holds.

Proof. We just need to show that Slater’s conditions hold. Suppose t 6= 0. 0 ∈ intf0(β) and

0 =
∑p
j=1 |βj | < t holds. When t = 0, the problem is trivial, because the solution of the prime

problem is 0 and p∗ = 1
2‖Y ‖

2
2. For the dual problem, by weak duality, we always have d∗ ≤ p∗.

It is easy to see that when λ > maxj |XT
j Y |, g(λ) = 1

2‖Y ‖
2
2 = p∗.

ÚÚÚnnn1. If λ > maxj |XT
j Y |, then 0 is one minimizer of

min
β

1

2
‖Y −Xβ‖22 + λ

p∑
j=1

|βj |.

Proof. Let β̂ is one minimizer of minβ
1
2‖Y −Xβ‖

2
2 + λ

∑p
j=1 |βj |. Then

0 ∈ ∂[
1

2
‖Y −Xβ‖22 + λ

p∑
j=1

|βj |]|β=β̂

.

∂
1

2
‖Y −Xβ‖22 = −XT (Y −Xβ)

∂[λ

p∑
j=1

|βj |] = λs = λ(s(β1), . . . , s(βj), s(βp))
T ,

where

s(x) =


1, x > 0;

α ∈ [−1, 1], x = 0;

−1, x < 0.

So we have

XT (Y −Xβ̂) = λs.

Since |XTY | ≺ λ, we see that β̂ = 0 satisfy the above equality by taking s(β̂j) =
XTj Y

λ ∈

[−1, 1].

Now we see that KKT conditions are necessary and sufficient β̂ to be the solution of the

Lasso.
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KKT conditions:

1.
∑p
j=1 |β̂j | ≤ t

2. λ ≥ 0

3. λ[
∑p
j=1 |βj | − t] = 0

4. XT (Y −Xβ̂) = λs.

λ = 0 =⇒ β̂ is the least square estimate. λ 6= 0 =⇒ ‖β̂‖1 = t.

½½½nnn8. The solution of the Lasso (2.6) always exists. If

t < t0 := min{‖β‖1 : XTXβ = XTY },

then for any solution β̂, we have ‖β̂‖1 = t. If t ≥ t0, then some OLS estimate is the solution of

the Lasso.

Proof. Because t < t0, from 1 and 4, we have λ 6= 0. If t ≥ t0, some OLS estimate, especially

β̂ := arg min
β
{‖β‖1 : XTXβ = XTY }

together with λ = 0 satisfy all of these FOUR conditions.

½½½nnn9 (Uniqueness). Suppose that β∗ and β+ are both the solution of the Lasso (2.5). Let S be

the support of one solution β∗:

S = {j : β∗j 6= 0}

and

Sc = {j : β∗j = 0}.

If

XT
SXS is invertible, and in KKT condition 4 sj < 1, for j ∈ Sc

then the Lasso (2.5) has a unique solution:

β+ = β∗.

Proof. Let f0(β) = 1
2‖Y −Xβ‖

2
2. Since both β∗ and β+ are the solution of the Lasso (2.5), we
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have

f0(β∗) + λ‖β∗‖1 = f0(β+) + λ‖β+‖1.

By the definition of s which satisfy KKT condition 4, we have

sTβ∗ = ‖β∗‖1.

So,

f0(β∗) + λ sTβ∗ = f0(β+) + λ‖β+‖1.

By subtracting λ sTβ+ from both sides, we have

f0(β∗) + λ sT (β∗ − β+) = f0(β+) + λ(‖β+‖1 − sTβ+).

Note KKT condition 4 says that

Of0(β∗) = −λs.

So we have

f0(β∗) + Of0(β∗)T (β+ − β∗)− f0(β+) = λ(‖β+‖1 − sTβ+).

By convexity of f0(β), we have

f0(β+) ≥ f0(β∗) + Of0(β∗)T (β+ − β∗).

So the left hand side is less than 0, and hence

‖β+‖1 ≤ sTβ+ ≤ ‖β+‖.

So

‖β+‖1 = sTβ+,

from which we know that when |sj | < 1, β+
j = 0.

Summarize, we have the following results:

β+
j = β∗j , for j ∈ Sc

and

f0(β∗) + Of0(β∗)T (β+ − β∗)− f0(β+) = 0.
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Now let

β̂S := ‖Y −XSβS‖22 + λ‖βS‖1,

then β∗ = [β̂S , 0] and β+ = [βS , 0]. If β̂S is unique, then β∗ = β+. In fact, β̂S is unique, because

the above problem is a strictly convex problem.

Some facts: 1. Strictly convex:

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

2. For twice continuously differentiable function f(x), if

O2f(x) � 0,

then f(x) is strictly convex.

3. If f(x) is strictly convex and g(x) is convex, then f(x) + g(x) is strictly convex.

4. For a strictly convex function, there is at most one minimization point.

½½½nnn10 (��). The solution of the Lasso (2.5) always exists. The solution β∗ satisfy the

following condition: (1) Xβ∗ is a constant; (2) ‖Y − Xβ‖22 is a constant. (3) λ‖β‖1 is a

constant.

Proof. If λ > 0, (2.5) ⇐⇒

min 1
2‖Y −Xβ‖

2
2 + λ‖β‖1

s.t. ‖β‖1 ≤ 1
2‖Y ‖

2
2/λ. (2.7)

A continuous function on a closed set has a minimization point. Suppose β∗ and β+ are both

the solutions. By the proof in Theorem 9, we have

f0(β∗) + Of0(β∗)T (β+ − β∗)− f0(β+) = 0.

By symmetry of β∗ and β+, we also have

f0(β+) + Of0(β+)T (β∗ − β+)− f0(β∗) = 0.
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So we have

Of0(β∗)T (β+ − β∗) + Of0(β+)T (β∗ − β+) = 0.

[Of0(β+)− Of0(β∗)]T (β∗ − β+) = 0

[−XT (Y −Xβ∗) +XT (Y −Xβ+)]T (β∗ − β+) = 0

(β∗ − β+)XTX(β∗ − β+) = 0

So we have

Xβ∗ = Xβ+.

Since

‖Y −Xβ∗‖+ λ‖β∗‖ = ‖Y −Xβ+‖+ λ‖β+‖,

we have

‖β∗‖1 = ‖β+‖1.

½½½nnn11. The solution of the Lasso (2.5) always exists. If

λ > 0,

then for any solution β̂, we have ‖β̂‖1 is a constant t∗. (2.5) has the same solution with the

following problem:

minimize 1
2

∑n
i=1

(
yi −

∑n
j=1 xijβj

)2

subject to
∑p
j=1 |βj | ≤ t∗, (2.8)

Proof. Suppose β∗ is an arbitrary solution. From Theorem 10 we have
∑p
j=1 |β∗j | is a constant.

let t∗ =
∑p
j=1 |β∗j |. Then β∗ and λ satisfy KKT conditions.

(1) Any solution of (2.5) is the solution of (2.7). This is obvious. Because any solution of

(2.5) together with λ and some s satisfy KKT conditions.

(2) Any solution of (2.7) is a solution of (2.5). We only need to prove that for any β+ which

is one solution of (2.7), it satisfies

‖Y −Xβ+‖22 + λ‖β+‖1 = ‖Y −Xβ∗‖22 + λ‖β∗‖1 = p∗.
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First ‖Y −Xβ+‖22 = ‖Y −Xβ∗‖22 because both β+ and β∗ are solutions of (2.7). Now we prove

‖β+‖1 = ‖β∗‖1.

Suppose not, then

‖Y −Xβ+‖22 + λ‖β+‖1 < ‖Y −Xβ∗‖22 + λ‖β∗‖1,

which contradicts our assumption that β∗ is one minimizer of (2.5).

2.4 Interior-point methods

The basic idea of Interior-point methods is to transform the inequality constrained optimization

problem to equality constrained optimization problem. Then Newton method is applied.

2.4.1 Newton method

Second order approximation of f(x):

f̂(x+ v) = f(x) + Of(x)T v +
1

2
vTO2f(x)v,

which achieves its minimum at v = −O2f(x)−1Of(x). The quantity

∆xnt ≡ −O2f(x)−1Of(x)

is called the Newton step (for f at x).

λ(x) ≡
[
2[f̂(x)− f̂(x+ ∆xnt)]

]1/2
=
[
Of(x)TO2f(x)−1Of(x)

]1/2
=
[
∆xTntO

2f(x)∆xnt
]1/2

is called the Newton decrement at x.

Algorithm 1 Newton method

Input: a start point x, tolerance ε > 0.
1: repeat
2: compute the Newton step and decrement:

∆xnt = −O2f(x)−1Of(x); λ2 = Of(x)TO2f(x)−1Of(x).

3: Update. x = x+ ∆xnt
4: until λ2/2 ≤ ε

2.4.2 Newton method for equality constrained problem

A convex optimization problem with equality constraints:
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minimize f(x)

subject to Ax = b

Suppose this problem has some good properties, say the problem achieves its minimum at some

point x∗ and the Slater’s conditions hold. That is, there exists some x ∈ int(domf) such that

Ax = b.

By KKT conditions, a point x∗ is optimal if and only if there is a ν∗, such that

Ax∗ = b, Of(x∗) +AT ν∗ = 0.

The Newton method with equality constraints is almost the same as Newton’s method without

constraints, except for two differences: 1. the initial point must be feasible; 2. we make sure

that the Newton step ∆xnt is a feasible direction: A∆xnt = 0.

We derive the Newton step ∆xnt by second-order Taylor approximation near x:

minimize (over z) f̂(x+ v) := f(x) + Of(x)T v + 1
2v
TO2f(x)v

subject to A(x+ v) = b

By KTT conditions, we have

A∆xnt = 0, O2f(x)∆xnt + Of(x) +AT ν∗ = 0.

Write them in a matrix form,

 O2f(x) AT

A 0


 ∆xnt

ν∗

 =

 −Of(x)

0

 .

The Newton decrement at x: λ(x) ≡
[
2[f̂(x)− f̂(x+ ∆xnt)]

]1/2
=
[
∆xTntO

2f(x)∆xnt
]1/2

.

Algorithm 2 Newton method

Input: a start point x, tolerance ε > 0.
1: repeat
2: compute the Newton step and decrement: ∆xnt and λ2

3: until λ2/2 ≤ ε
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2.4.3 The barrier method

Once we can transform inequality constrained minimization problems to equality constrained

problem, then Newton methods described in previous subsection can be applied.

Note that

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , n,

Ax = b.

⇐⇒

minimize f0(x) +
∑n
i=1 I−(fi(x))

subject to Ax = b,

where I− : R→ R is the indicator function for the nonpositive reals:

I−(u) =

 0 u ≤ 0

∞ u > 0.

By replacing the indicator function I−(u) with an approximated differentiable function:

Î−(u) = −(1/t)log(−u),

we transform the original inequality constrained problem to a tractable equality constrained

convex problem:

minimize f0(x) +
∑n
i=1−(1/t) log(−fi(x))

subject to Ax = b. (2.9)

x∗(t) is called central path. The function

φ(x) = −
n∑
i=1

log(−fi(x))

is called the log barrier for the original problem.
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The gradient and Hessian of φ:

Oφ(x) =

n∑
i=1

− 1

fi(x)
Ofi(x)

O2φ(x) =

n∑
i=1

− 1

fi(x)
O2fi(x) +

n∑
i=1

1

f2
i (x)

Ofi(x)Ofi(x)T

½½½nnn12. Suppose the problem (2.11) has the following properties: 1. (2.11) can be solved via

Newton’s method 2. it has a unique solution for each t > 0.

Suppose the original problem has the following properties: 1. it achieves its minimum at some

point x∗ and the minimum value p∗ > −∞. 2. Slater’s conditions hold. Then

0 ≤ f0(x∗(t))− p∗ ≤ n/t

Proof. Let x∗(t) be the central path – the solution of problem (2.11), then it satisfies with KKT

conditions:

Ax∗(t) = b, fi(x
∗(t)) < 0, i = 1, . . . ,m

and there exists a ν̂ ∈ Rp such that

0 = Of0(x∗(t)) + (
1

t
)Oφ(x∗(t)) +AT ν̂

= Of0(x∗(t)) +
1

t

n∑
i=1

1

−fi(x∗(t))
Ofi(x

∗(t)) +AT ν̂

From the above equation, we see that: Every central point yields a dual feasible point, and hence

a lower bound on the optimal value p∗. Define

λ∗i (t) = − 1

−tfi(x∗(t))
, i = 1, . . . ,m, ν∗(t) = ν.

We claim that the pair λ∗(t), ν∗(t) is dual feasible. It is because λ∗(t) � 0. Since

Of0(x∗(t)) +

n∑
i=1

λ∗(t)Ofi(x
∗(t)) +AT ν̂ = 0,

we see that x∗(t) minimizes the Lagrangian:

L(x, λ, ν) = f0(x) +

n∑
i=1

λifi(x) + νT (Ax− b)
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for λ = λ∗(t) and ν = ν∗(t), which means that λ∗(t), ν∗(t) is a dual feasible pair. The dual

function is

g(λ∗, ν∗) = f0(x∗(t)) +

n∑
i=1

λ∗i (t)fi(x
∗(t)) + ν∗(t)

T
(Ax∗(t)− b) = f0(x∗(t))− n

t

By weak duality, we have

f0(x∗(t))− n

t
≤ p∗ =⇒ 0 ≤ f0(x∗(t))− p∗ ≤ n

t

This confirms the intuition that x∗(t) converges to an optimal point as t→∞.

Algorithm 3 Barrier method

Input: strictly feasible point x, t := t(0) > 0, µ > 1, tolerance ε > 0.
1: repeat
2: Centering step. Compute x∗(t) by minimizing tf0 + φ, subject to Ax = b, starting at x.
3: Update. x := x∗(t).
4: Increase t. t := µt.
5: until n/t ≤ ε

2.4.4 `1-norm approximation

Consider the `1-norm approximation problem

minimize ‖Ax− b‖1.

⇐⇒

minimize
∑n
i=1 yi

subject to |Ax− b| � y

⇐⇒

minimize
∑n
i=1 yi

subject to

 A −I

−A −I


 x

y

 �
 b

−b
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This is a linear optimization problem. The centering step:

minimize t1T y + φ.

Newton equation:

H

 ∆x

∆y

+ g = 0,

where H is the Hessian, g the gradient of t1T y + φ.

H = O2φ =

n∑
i=1

− 1

fi(x)
O2fi(x) +

n∑
i=1

1

f2
i (x)

Ofi(x)Ofi(x)T

=

n∑
i=1

1

f2
i (x)

Ofi(x)Ofi(x)T

= OfDOfT (in matrix form)

=

 AT −AT

−I −I


 D1

D2


 A −I

−A −I

 ,

where D1 = diag( 1
[Ax−y−b]2i

),D2 = diag( 1
[−Ax−y+b]2i

) and Of = [Of1, . . . ,Ofn]p×n.

g = Oφ+

 0

t1


=

n∑
i=1

− 1

fi(x)
Ofi(x) +

 0

t1


= Of

 g1

g2

+

 0

t1


=

 AT −AT

−I −I


 g1

g2

+

 0

t1


=

 AT (g1 − g2)

−g1 − g2 + t1

 ,

where g1, g2 are two column vector: [g1]i = [− 1
Ax−y−b ]i and [g2]i = [− 1

−Ax−y+b ]i.



29

Finally, we have the Newton equation:

 AT −AT

−I −I


 D1

D2


 A −I

−A −I


 ∆xnt

∆ynt

 = −

 AT (g1 − g2)

−g1 − g2 + t1

 ,

From which, under some simple regularity conditions, we have (homework)

AT D̃A∆xnt = −AT g̃

and

∆ynt = (D1 +D2)−1 [−g̃2 + (D1 −D2)A∆xnt] ,

where

g̃1 = g1− g2; g̃2 = −g1− g2 + t1

D̃ = 2
[
diag(y)2 + diag(b−Ax)2

]−1

g̃ = g̃1 + (D1−D2)(D1 +D2)−1g̃2

.

2.5 Reading materials

An Interior-Point Method for Large-Scale `1 Regularized Least Squares, written by Kim, Koh,

Lustig, Boyd and Gorinevsky.

An Interior-Point Method for Large-Scale `1 Regularized logistic regression, written by Kim,

Koh, and Boyd.

2.6 Homework

1. Convex problem �ÛÜ�`)Ò´�Û�`).

2. The solution of the Lasso (2.5) with λ > 0 always exists. The solution β∗ satisfy the following

condition: (1) Xβ∗ is a constant; (2) ‖Y −Xβ‖22 is a constant. (3) ‖β‖1 is a constant.

3. D1 = diag( 1
[Ax−y−b]2i

),D2 = diag( 1
[−Ax−y+b]2i

)

 AT −AT

−I −I


 D1

D2


 A −I

−A −I


 ∆xnt

∆ynt

 = −

 AT (g1 − g2)

−g1 − g2 + t1

 ,
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From which, under some simple regularity conditions, we have (homework)

AT D̃A∆xnt = −AT g̃

and

∆ynt = (D1 +D2)−1 [−g̃2 + (D1 −D2)A∆xnt] ,

where

g̃1 = g1− g2; g̃2 = −g1− g2 + t1

D̃ = 2
[
diag(y)2 + diag(b−Ax)2

]−1

g̃ = g̃1 + (D1−D2)(D1 +D2)−1g̃2

.

4.

∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of sets)

5. Definition of Strictly convex:

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

(1) For twice continuously differentiable function f(x), if

O2f(x) � 0,

then f(x) is strictly convex.

(2) If f(x) is strictly convex and g(x) is convex, then f(x) + g(x) is strictly convex.

(3) For a strictly convex function, there is at most one minimization point.

2.7 Small project

`1 regularized robust regression.
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3.1 R package for the Lasso

1. The installation of LARS

install.packages(‘lars’)

2. The usage of LARS

library(lars)

?lars

A ”lars” object is returned, for which print, plot, predict, coef and summary methods exist.

3.2 Simulations

n = 1000, p = 3 X1, X2, e i.i.d. ∼ N(0, 1) X3 = 2
3X1 + 2

3X2 + 1
3ei Y = X1β1 + X2β2 + ε (a)

β1 = 2, β2 = 3; (b)β1 = −2, β2 = 3.

C21C
−1
11 = (

2

3
,

2

3
).

(1) the differences between the two solution path:
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Figure 3.1: Two different Lasso solution paths. Left: β = (2, 3, 0). Right: β = (−2, 3, 0).

The key difference between the two settings is that the first setting (β = (2, 3, 0)) does not

satisfy the Irrepresentable Condition, while the other one satisfy that condition.

½½½ÂÂÂ3 (Irrepresentable Condition).

max
∣∣XScXS(XT

SXS)−1sign(β)
∣∣ < 1.
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3.3 Applications–Microarray Classification

Data Description

Training set: 144 patients with 14 different types of cancer Test set: 54 patients. Gene expression

measurements: 16, 063 genes.

n = 144, p = 16, 063

Data visualization

Model Fitting

What model?

1. Regression.

min ‖Y −Xβ‖22

Assumption:

1. Y = Xβ + ε

2. E(ε) = 0

In practice, it works quite well for binary Y .

2. Binary Logistic regression. This is one special case of GLM - Generalized Linear Models.

Yi ∈ {0, 1}.

logit P (Yi = 1|xi) = xTi β

min

n∑
i=1

[
log
(

1 + ex
T
i β
)
− yixTi β

]
3. SVM

For separated case, the optimization problem is

maxβ,β0,‖β‖2=1M

s.t. yi(x
T
i β + β0) ≥M, i = 1, . . . , n.

(3.1)

which is equivalent to

min ‖β‖2

s.t. yi(x
T
i β + β0) ≥ 1, i = 1, . . . , n.

(3.2)
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Figure 3.2: This figure is from “elements to statistical machine learning” P418.

Now consider the nonseperable case. The natura way to modify the constraint in (3.1) is

by introducing the slack variable ξ = (ξ1, . . . , ξn):

yi(x
T
i β + β0) ≥M(1− ξi),

∀i, ξi ≥ 0,
∑
i ξi ≤ constant.

Remark: M
∑
i ξi measures the total amount distance of points on the wrong side of their

margin.

An equivalent form of the no-separable SVM problem

min ‖β‖22

s.t. yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n.

ξi ≥ 0,
∑
i ξi ≤ constant

(3.3)

Or equivalently,

min 1
2‖β‖

2
2 + C

∑
i ξi

s.t. yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n.

ξi ≥ 0

(3.4)

Equivalently,

min

n∑
i=1

[1− yi(xTi β + β0)]+ +
λ

2
‖β‖22, (3.5)

where x+ indicates the positive part of x.

If λ = C/2, then (3.5) and (3.4) are equivalent. (Homework.)

4. k-NN This method requires no model to be fit. Given a query point x0, we find the k training
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points x(r), r = 1, . . . , k closest in distance to x0,, and then classify using majority vote

among the k neighbors.

5. Multi-category SVM. (Ref. Multicategory support vector machines. By Lee, Lin and Wahba.

JASA 2004 67-81)

Define vj as a k-dim vector with the jth coordinate 1 and − 1
k−1 elsewhere. If example i falls

into class j, then we denote yi = vj . Now define k classifier f(X) = (f1(X), . . . , fK(X))

with sum-to-0 constraint

∑
i

fi(X) = 0, for any X ∈ Rp.

Let L(·) be a function that maps a class label yi to a 0-1 loss vector: if sample i falls into

class j, then L(yi) is a k-dim vector with 0 in the jth coordinate and 1 elsewhere. Then

we can define the Multi-category SVM:

min
1

n

n∑
i=1

L(yi)
T (f(xi)− yi)+ +

λ

2

∑
i,j

β2
ij .

Classification rule:

φ(x) = arg max
j
fj(x).

When K = 2, the M-SVM reduces to the simple SVM. If yi = (1,−1), then

L(yi)
T (f(xi)− yi)+ = (0, 1)T (f1(xi)− 1)+, f2(xi) + 1)+) = (f2(xi) + 1)+ = (1− f1(xi))+.

6. Multi-class logistic regression. It generalizes the binary response case to the multi-nominal

response case.

P (Yi = k|xi) ∝ exp(xTi βk + βk0)

or,

P (Yi = k|xi) =
exp(xTi βk + βk0)∑K
j=1 exp(xTi βj + βj0)

7. Sparse LDA.

(1) LDA. Suppose that we model each class density as multivariate Gaussian

fk(x) =
1

(2π)p/2|Σk|1/2
exp

[
−1

2
(x− µk)TΣ−1

k (x− µk)

]
.
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Let πk denote the prior probability of class k, then

log
P (G = k|X = x)

P (G = l|X = x)
= log

fk(x)πk
fl(x)πl

=

[
log(πk)− 1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk)

]
−
[
log(πl)−

1

2
log |Σl| −

1

2
(x− µl)TΣ−1

l (x− µl)
]

Define

δk(x) = log(πk)− 1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk),

then

P (G = k|X = x) ≥ P (G = l|X = x) =⇒ δk(x) ≥ δl(x).

So the decision rule can be described as:

G(x) = arg max
k

δk(x).

This is QDA. If Σk = Σ, for all k, then the QDA can be LDA with

δk(x) = log(πk) + xTΣ−1µk −
1

2
µTk Σ−1

k µk.

In practice, parameters should be estimated from train data:

• π̂k = Nk/N

• µ̂k =
∑
gi=k

xi/Nk

• Σ̂ =
∑K
k=1

∑
gi=k

(xi − µ̂k)(xi − µ̂k)T /(N −K)

(2) FDA. Transform categorical response to continuous scores containing the information

of predictors.

We use gi to denote the class of sample i, then we solve

arg min
∑
i

(θ(gi)− xTi β)2.

To avoid a trivial solution, we use restrictions on θ - mean zero and unit variance.

For a two class separation problem, one direction is enough. But for a K-class separation

problem, more directions are needed. Suppose we use L ≤ K − 1 directions, we can solve
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the following problem:

min
∑
l

∑
i

(θl(gi)− xTi βl)2,

such that

θT θ = IL×L

Once the L orthogonal directions are obtained, we can use the new features to train the

classifiers via LDA. It can be shown that this LDA is equivalent to the original LDA on

the raw data.

The more powerful of this model is that

• introduce non-linear function

• introduce regularization (penalty)

8. Classification Tree.

f(X) =
∑
m

cmI{X} ∈ Rm

How to find the best partitions? Computationally infeasible. A greedy algorithm for

Figure 3.3: Partitions and CART

regression tree:
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Consider a splitting variable j and split point s, define

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R1(j,s)

(yi − c2)2


Repeat the above procedure until some some criteria is reached.

For Classification tree, the only difference is that we won’t use L2 loss function, instead we

use 0-1 loss, that is

min
j,s

min
c1

∑
xi∈R1(j,s)

I{yi 6= ci}+ min
c2

∑
xi∈R1(j,s)

I{yi 6= c2}


Selection of Tuning Parameter

(1) Cross validation

(2) Three splits

(3) AIC,BIC,Cp values

AIC = n log(‖Y − Ŷ ‖2) + 2 df

BIC = n log(‖Y − Ŷ ‖2) + 2 log n df

Cp =
‖Y − Ŷ ‖2

σ2
− n+ 2 df.

Results and Comparison

3.4 Homework

1. If λ = C/2, then (3.5) and (3.4) are equivalent.

2. Reproduce the simulations in Section 3.2 in ”On model selection consistency of the Lasso”

by Zhao and Yu. Report your findings. Hand in your report with your code.
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3.5 Small Project

Working on handwritten digit recognition problem. Compare your method with popular meth-

ods you can think of.

Working on the microarray classification problem. Compare your method with popular methods

you can think of.
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Chapter 4

Concentration Inequalities

43
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4.1 Introduction

Concentration inequalities deal with deviations of functions of independent random variables

from their expectations.

Jenson Inequality: for convex f ,

f(E(X)) ≤ E[f(X)].

Proof. Since f(x) is convex, we have

f(X) ≥ f(E(X)) + aT (X − E(X)),

for a ∈ ∂f at E(X). So we have

E[f(X)] ≥ f(E(X)) + aTE(X − E(X)) = f(E(X))

Applications of Jenson Inequality:

E(X2) ≥ [E(X)]2

∑n
i=1 xi
n

≥ (Πn
i=1xi)

1
n

KL-divergence is always non-negative: For two distributions P and Q of discrete random vari-

ables, their KõL divergence is defined as

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
≥ 0 (homework)

Markov inequality: If X ≥ 0, then for all t > 0,

P [X ≥ t] ≤ E[X]

t
.
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Proof.

P [X ≥ t] = E[1{X≥t}]

≤ E

[
X

t
1{X≥t}

]
≤

E[X1{X≥t}]

t

≤ E[X]

t
.

Chebyshev: for any t > 0,

P [|X − E[X]| ≥ t] ≤ V ar(X)

t2
.

Chernoff: for all t ∈ R,

P [X ≥ t] ≤ inf
λ≥0

E[eλ(X−t)].

Proof.

P [X ≥ t] = P (eλX ≥ eλt)

≤ E[eλX ]

eλt

= E[eλ(X−t)]

4.1.1 Asymptotic V.S. Non-asymptotic

Let X1, X2, . . . , be i.i.d. Bernoulli random variables: P (Xi = 1) = P (Xi = −1) = 0.5. Then by

the Central Limit Theorem as n→∞,

1√
n

n∑
i=1

Xi →dist. g,

where g is a N(0, 1) standard normal random variable. Equivalently,

P

[
1√
n

n∑
i=1

Xi > t

]
→ P (g > t) =

1√
2π

∫ ∞
t

e−x
2/2dx.
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Hoeffding’s tail inequality tells us that, for any n and t > 0,

P

[
1√
n

n∑
i=1

Xi > t

]
≤ e−t

2/2.

To prove Hoeffding’s tail inequality, we can use Hoeffding’s inequality:

ÚÚÚnnn2 (Heoffding’s Inequality.). Let X be a random variable with EX = 0, a ≤ X ≤ b. Then

for t

E[etX ] ≤ et
2(b−a)2/8.

Proof of Hoeffding’s tail inequality:

Proof. By Chernoff Inequality,

P

[
1√
n

n∑
i=1

Xi > t

]
≤ E(e

λ( 1√
n

∑n
i=1Xi−t))

= e−λtΠn
i=1Ee

λ√
n
Xi

≤ e−λtΠn
i=1e

[ λ√
n

]222/8
(by Hoeffding′s Inequality)

= e
1
2λ

2−λt

by taking λ = t, we have

P

[
1√
n

n∑
i=1

Xi > t

]
≤ e−t

2/2.

Proof of Hoeffding’s Inequality:

Proof. We only have to prove t > 0 case. For t < 0 case, we can write tX = −t × (−X). Since

etx is convex, we have for any 0 ≤ α ≤ 1,

eαta+(1−α)tb ≤ αeta + (1− α)etb.

By taking α = b−x
b−a , we have

etx ≤ b− x
b− a

eta +
x− a
b− a

etb

By taking expectation on both sides, we have

E(etX) ≤ b

b− a
eta − a

b− a
etb
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Finally it suffices to prove

b

b− a
eta − a

b− a
etb ≤ et

2(b−a)2/8,

Let f(t) = log
[

b
b−ae

ta − a
b−ae

tb
]
, then we have

f(0) = 0

f ′(t) =
ab(eta − etb)
beta − aetb

f ′′(t) =
ab(aeta − betb)(beta − aetb)− [ab(eta − etb)]2

[beta − aetb]2

=
ab[−b2et(a+b) − a2et(a+b) + 2abet(a+b)]

[beta − aetb]2

=
−abet(a+b)(a− b)2

[beta − aetb]2

≤ −abet(a+b)(a− b)2

−4abet(a+b)

=
(a− b)2

4
,

we used the condition that a < 0 and b > 0. By Taylor expansion,

f(t) = f(0) + f ′(0)t+
1

2
f ′′(ξ)t2, for some ξ ∈ [0, t]

≤ t2(b− a)2

8
,

Equivalently,

b

b− a
eta − a

b− a
etb ≤ et

2(b−a)2/8.

4.2 Bounded random variables

½½½nnn13 (Hoeffding). Let X1, . . . , Xn be independent bounded random variables such that Xi falls

in the interval [ai, bi] with probability one. Then for any t > 0 we have

P
[∑

Xi − E
(∑

Xi

)
≥ t
]
≤ e−2t2/

∑
(bi−ai)2 .

A disadvantage of this inequality is that it ignores information about the variance of the X ′is.
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½½½nnn14 (Bennett’s inequality.). Let X1, . . . , Xn be independent real-valued random variables with

zero mean and assum that Xi ≤ 1. Let

σ2 =
1

n

∑
i

var(Xi).

Then for any t > 0,

P
[∑

Xi > t
]
≤ exp

{
−nσ2h

(
t

nσ2

)}
,

where h(u) = (1 + u) log(1 + u)− u for u ≥ 0.

Proof.

P
[∑

Xi > t
]
≤ e−stΠiE(esXi)

Let

ψ(x) = exp(x)− x− 1.

We see that

ψ(x) ≤ x2

2
, for x ≤ 0.

φ(sx) ≤ x2ψ(s), for s ≥ 0 and x ∈ [0, 1].

So,

E[esXi ] = 1 + sE(Xi) + E(ψ(sXi))

= 1 + E(ψ(sXi))

= 1 + E(ψ(sXi)+) + E(ψ(−(sXi)−)

≤ 1 + E(ψ((sXi)+) +
s2

2
E
{

[(Xi)−]2
}

≤ 1 + ψ(s)E
{

[(Xi)+]2
}

+
s2

2
E
{

[(Xi)−]2
}

≤ 1 + ψ(s)E
{

[(Xi)+]2
}

+ ψ(s)E
{

[(Xi)−]2
}

= 1 + ψ(s)E(X2
i )

≤ eψ(s)σ2
i

So we have

P
[∑

Xi > t
]
≤ e−stΠiE(esXi)

≤ exp
{
nσ2ψ(s)− st

}
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Note that

nσ2ψ(s)− st = nσ2(es − s− 1)− st

is minimized at

s = log(1 +
t

nσ2
).

Substituting this value in the upper bound, we obtain Bennett’s inequality.

½½½nnn15 (Bernstein’s inequality.). Let X1, . . . , Xn be independent real-valued random variables

with zero mean and assume that Xi ≤ 1. Let

σ2 =
1

n

∑
i

var(Xi).

Then for any ε > 0,

P

[
1

n

∑
Xi > ε

]
≤ exp

{
−nε2

2(σ2 + ε/3)

}
.

Proof. This is because

h(u) ≥ u2

2 + 2u/3
.

4.3 Gaussian Random Variables

ÚÚÚnnn3 (Bounds of Gaussian CDF). X is N(0, 1), for any t > 0,

1√
2π
e−t

2/2

(
1

t
− 1

t3

)
≤ P [X ≥ t] ≤ e−t

2/2

√
2πt

.

Proof.

P [X ≥ t] =

∫ ∞
t

1√
2π

(
1

x
)xe−

x2

2 dx

=
1√
2π

∫ ∞
t

− 1

x
de−

x2

2

=
1√
2π

[
e
−t2
2

t
−
∫ ∞
t

e−
x2

2
1

x2
dx

] (
≤ 1√

2π

e
−t2
2

t

)

=
1√
2π

[
e
−t2
2

t
+

∫ ∞
t

1

x3
de−

x2

2

]

=
1√
2π

[
e
−t2
2

(
1

t
− 1

t3

)
+

∫ ∞
t

3

x4
e−

x2

2 dx

] (
≥ 1√

2π

[
e
−t2
2

(
1

t
− 1

t3

)])
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½½½nnn16. X ∼ N(0, σ2), we have

P (|X| ≥ t) ≤ e−t
2/(2σ2)

Proof. We only need to prove

P (|X| ≥ t) ≤ e−t
2/2,

for a standard normal r.v. X.

P (|X| > t) = 2P (X > t)

≤ 2e−t
2/2

√
2πt

≤ e−t
2/2 (if t ≥

√
2
π )

For 0 ≤ t <
√

2
π , let f(x) ≡ 2P (X ≥ t)− e−t2/2. we have

f(0) = 0,

f ′(x) = − 2√
2π
e−x

2/2 + xe−x
2/2 = (x−

√
2

π
)e−x

2/2 < 0,

so we have f(x) ≤ f(0) = 0, for 0 ≤ t <
√

2
π .

½½½nnn17 (Gaussian concentration inequality for Lipschitz functions). Let f : Rd → R be a function

which is Lipschitz with constant 1 (i.e., |f(x) − f(y)| ≤ ||x − y||2 for all x, y ∈ Rd). Then for

any t, we have

P [f(X)− E(f(X)) ≥ t] ≤ exp(−ct2)

Proof. We only need to prove

P (f(X) ≥ t) ≤ exp(−ct2),

for E(f(X)) = 0. In fact,

P (f(X) ≥ t) ≤ E[exp(s(f(X)− t))].
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Let Y be an independent copy of X. By Jenson’s inequality, we have

E[exp(−sf(Y ))] ≥ exp(−sEf(Y )) = 1,

So

E[exp(sf(X))] ≤ E[exp(sf(X)) exp(−sEf(Y ))]

= E[exp(s[f(X)− f(Y )])]

{ if X is one-dimensional variable, then we have the following conclusion...}

≤ E[exp(s|X − Y |)] ≤ e2s2

{ ... and the theorem is proved under a more mild condition: subgaussian.}

Now we prove for a general dimension d. Suppose f is a differentiable function. Since it is a

Lipshitz function, we have

‖Of(x)‖2 ≤ 1.

Note that

f(X)− f(Y ) =

∫ 1

0

d

dθ
f((1− θ)Y + θX)dθ,

by Jensen’s Inequality, we have

exp(t(f(X)− f(Y ))) ≤
∫ 1

0

exp(t
d

dθ
f(Y (1− θ) +Xθ))dθ

By chain rule

E exp(t(f(X)− f(Y ))) ≤
∫ 1

0

E exp(tOf(Xθ)(X − Y ))dθ ≤ exp(Ct2)

P (f(X) ≥ t) ≤ E[exp(s(f(X)− t))] ≤ exp(Cst2 − st).

Taking s = 1
2C , we have

P (f(X) ≥ t) ≤ exp(− 1

2C
t2).
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4.4 Sub-Gaussian Random Variables

Sub-gaussian r.v. is a generalization of Gaussian random variables.

½½½ÂÂÂ4 (Subgaussian random variables). A r.v. is subgaussian if ∃ c, C such that

P (|x| ≥ t) ≤ Ce−ct
2

,∀t ≥ 0.

ÚÚÚnnn4. Let X be a zero mean r.v., then the following two statements are equivalent

1. X is subgaussian

2. ∃c2, C2,

Eec2X
2

≤ C2

3. ∃c3, C3,

E(etX) ≤ C3e
c3t

2

∀t,

Equivalently, ∃c3, C3,

E(et|X|) ≤ C3e
c3t

2

∀t > 0,

by the fact that

et|X| ≤ etX + e−tX

4. ∃c3 > 0

E(etX) ≤ ec3t
2

∀t.

Proof. We prove this theorem by the following way: 1. =⇒ 2. =⇒ 3. =⇒ 1.

1. =⇒ 2.

E(ec2X
2

) =

∫ ∞
0

2c2ue
c2u

2

P (|X| ≥ u)du+ 1

≤ C

∫ ∞
0

uec2u
2

e−cu
2

du+ 1

= C

∫ ∞
0

ue−cu
2/2du+ 1 (by taking c2 = c/2)

= −C/c
∫ ∞

0

de−cu
2/2 + 1

= C/c+ 1



53

2. =⇒ 3. It suffices to prove ∃c3, C3, such that

E(etX−c3t
2

) ≤ C3.

In fact we know that

E(etX−c3t
2

) ≤ E
X2

4c3

≤ C2 (by taking c3 = 1
4c2

)

3. =⇒ 1.

P (|X| ≥ t) ≤ E eλ(|X|−t)

≤ C3e
c3λ

2−λt

= C3e
− t2

4c3 (by taking λ = 1
2c3

)

Finally (3) ⇐⇒ (4).

(3) =⇒ (4). For |t| ≥ 1, we have

EetX ≤ C3e
c3t

2

≤ ec4t
2

.

For 0 ≤ |t| < 1, we have

EetX = 1 + E(ψ(tX))

≤ 1 + E(ψ|tX|)

≤ 1 + t2Eψ(|X|)

≤ ec5t
2

.

So,

EetX ≤ emax{c4,c5}t2 .

Examples about sub-gaussian random variable:
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1. N(0, 1) N(0, σ2)

E(etX) = e
1
2σ

2t2

2. Bounded R.V. with mean 0. By Hoeffding’s inequality,

E[etX ] ≤ et
2(b−a)2/8.

Sub-Gaussian distribution is a generalization of Gaussian distribution.

½½½nnn18. Let X1, X2, . . . , Xn be i.i.d, mean-zero subgaussian random variables. Also let a1, a2, . . . , an ∈

R be such that
∑
k a

2
k = 1. Then

∑
akXk is a subgaussian random variable.

Proof.

E(et
∑
akXk) = Πke

takXk

≤ Πke
ca2kt

2

= ect
2

íííØØØ1 (Hoeffding Tail Inequality).

P

[∣∣∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣∣∣ > t

]
≤ Ce−ct

2

.(C = 2, c =
1

2
)

4.5 Random Matrix

½½½nnn19 (Wigner’s Semicircle Law). Consider and N ×N matrix A with entries Aij ∼ N(0, σ2).

Define

An =
1√
2n

(A+A′).

Then An is symmetric with

var(Aij) =

 σ2/n, if i 6= j;

2σ2/n, if i =j.
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The density of eigenvalues of An is given by

fn(λ) := lim
∆t→0+

1

n
#{λ ≤ λi ≤ λ+ ∆t}/∆t

−→n→∞


1

2πσ2

√
4σ2 − λ2, if |λ| ≤ 2σ;

0, if i =j.

Below is the R code to demonstrate the semi-circle law:

n <- 5000;

m <- array(rnorm(n^2),c(n,n));

m2 <- (m+t(m))/sqrt(2*n);# Make m symmetric

lambda <- eigen(m2, symmetric=T, only.values = T);

e <- lambda$values;

hist(e,breaks=seq(-2.01,2.01,.01),

main=NA, xlab="Eigenvalues",freq=F)

x = seq(-2.01,2.01,.01)

y = sqrt(4-x^2)/(2*pi)

lines(x,y,col = ’red’)

Eigenvalues
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Figure 4.1: Demonstration of Semi-circle Law

Let s1 ≥ s2 ≥ . . . ≥ sp be the p singular values of An×p. (n ≥ p) In this section, we bound

s1 and sn. We mainly use the following result:
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½½½nnn20 (Slepian’s Inequality). Assume (Xt)t∈T ,(Yt)t∈T are Gaussian centered process. If for all

s, t ∈ T,

E(Xt −Xs)
2 ≤ E(Yt − Ys)2,

then

E

(
sup
t∈T

Xt

)
≤ E

(
sup
t∈T

Yt

)
.

Note: A Gaussian process is a stochastic process whose realizations consist of random values

associated with every point in a range of times (or of space) such that each such random variable

has a normal distribution. Moreover, every finite collection of those random variables has a

multivariate normal distribution.

It is easy to show that

s1 = sup
‖u‖2≤1

‖Au‖2 = sup
‖u‖2≤1,‖v‖2≤1

< Au, v >

sp = inf
‖u‖2≤1

‖Au‖2 = inf
‖u‖2≤1

sup
‖v‖2≤1

< Au, v >

½½½nnn21 (Upper Bound). Let A be an n× p Gaussian random matrix. Then

E(s1) ≤
√
n+
√
p.

Proof. Let

X(u,v) :=< Au, v > and Y(u,v) =< g, u > + < h, v >,

where ‖u‖2 = ‖v‖2 = 1, g = (g1, g2, . . . gp) is a gaussian random vector with gi i.i.d. ∼ N(0, 1),

and h = (h1, h2, . . . hn) is a gaussian random vector with hi i.i.d. ∼ N(0, 1). We can verify that

for any (u, v) and (u′, v′)

E[X(u,v) −X(u′,v′)]
2 ≤ E[Y(u,v) − Y(u′,v′)]

2.

The LHS:

E[X(u,v) −X(u′,v′)]
2 = E(

∑
ij

(Aijuivj − u′iv′j)2) =
∑
ij

(uivj − u′iv′j)2

The RHS:

E[Y(u,v) − Y(u′,v′)]
2 = E[uT g + vTh− u′T g − v′Th]2 =

∑
(ui − u′i)2 +

∑
(vj − v′j)2
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Now we verify ∑
ij

(uivj − u′iv′j)2 ≤
∑

(ui − u′i)2 +
∑

(vj − v′j)2

∑
ij

(uivj − u′iv′j)2 =
∑
i

∑
j

(u2
iu

2
j + u′i

2
v′j

2 − 2uiu
′
ivjv

′
j)

=
∑
i

u2
i + u′i

2 − 2uiu
′
i

∑
j

vjv
′
j


= 2− 2

(∑
i

uiu
′
i

)∑
j

vjv
′
j



∑
(ui − u′i)2 +

∑
(vj − v′j)2 = 4− 2

∑
i

uiu
′
i − 2

∑
j

vjv
′
j

So

[∑
(ui − u′i)2 +

∑
(vj − v′j)2

]
−
∑
ij

(uivj − u′iv′j)2

=

4− 2
∑
i

uiu
′
i − 2

∑
j

vjv
′
j

−
2− 2

(∑
i

uiu
′
i

)∑
j

vjv
′
j


= 2 + 2

(∑
i

uiu
′
i

)∑
j

vjv
′
j

− 2
∑
i

uiu
′
i − 2

∑
j

vjv
′
j

= 2

(∑
i

uiu
′
i − 1

)∑
j

viv
′
j − 1

 ≥ 0

By Slepian’s Inequality, we have

E(supX(u,v)) ≤ E(supY(u,v))

= E(sup < g, u > + < h, v >)

= E(||g||2) + E(||v||2)

<
√
E(‖g‖22) +

√
E(‖g‖22)

=
√
n+
√
p
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½½½nnn22 (Gordon’s Inequality). Let (Xu,v)u∈U,V ∈V and (Yu,v)u∈U,V ∈V be centered Gaussain ran-

dom process. If

(1) E(Xu,v −Xu′,v′)
2 ≤ E(Yu,v − Yu′,v′)2 if u 6= u′ ;

(2) E(Xu,v −Xu,v′)
2 = E(Yu,v − Yu,v′)2

Then

E sup
u∈U

inf
v∈V

Xu,v ≤ E sup
u∈U

inf
v∈V

Yu,v.

Note that Gordon’s inequality implies Slepian’s inequality by taking the index set V to be a

singleton set (i.e., |V | = 1).

By applying Gordon’s Inequality for −X,−Y , we have

E inf
u∈U

sup
v∈V

Xu,v ≥ E inf
u∈U

sup
v∈V

Yu,v.

½½½nnn23 (Lower Bound). Let A be an n× p Gaussian random matrix. Then

E(sn) ≥
√
n−√p.

Proof. We already show that Xu,v and Yu,v constructed as before satisfy condition (1) in Theorem

22. Now we verify condition (2) in Theorem 22. That is,

∑
ij

(uivj − uiv′j)2 =
∑

(ui − ui)2 +
∑

(vj − v′j)2,

which holds by the fact that
∑
u2
i = 1. By Gordon’s inequality we have

E(sn) = E inf
u∈U

sup
v∈V

Xu,v

≥ E inf
u∈U

sup
v∈V

Yu,v

= E inf
u∈U

sup
v∈V

(< g, u > + < h, v >)

= E( inf
u∈U

< g, u >) + E(‖h‖2)

≥ −E(‖g‖2) + E(‖h‖2)

≥
√
n−√p.

The last inequality uses the fact that

f(n) :=
√
n− E

√
X2

1 + . . . X2
n
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is a decreasing function of n.

Some facts about chi-square distribution:

1. density

f(x;n) =
1

2k/2Γ(k/2)
xk/2−1e−x/21x≥0

2. Gamma function

Γ(x) =

∫ ∞
0

tx−1e−xdx

3. Expectation and Second moment.

E(X) = n and E(X2) = 2n+ n2

4. Squre Root.

E(
√
X) =

√
2

Γ(k+1
2 )

Γ(k2 )

By the fact that

Γ(
1

2
) =
√
π and Γ(1 + x) = xΓ(x),

we have

5.

µ(1) =

√
2

π

µ(2) =

√
π

2

µ(k + 2) = (1 +
1

k
)µ(k)

Finally we use some known concentration inequalities for the extreme eigenvalues of Gaussian

random matrices [Davidson, K. R. and Szarek, S. J. (2001).] to bound the eigenvalues of a

Gaussian random matrix. Although these results hold more generally, our interest here is on

scalings (n, q) such that q/n→ 0.

½½½nnn24 (Davidson, K. R. and Szarek, S. J. 2001.). Let Γ ∈ Rn×q be a random matrix whose

entries are i.i.d. from N(0, 1/n), q ≤ n. Let the singular values of Γ be s1(Γ) ≥ . . . ≥ sq(Γ).

Then

max

{
P

[
s1(Γ) ≥ 1 +

√
q

n
+ t

]
, P

[
sq(Γ) ≤ 1−

√
q

n
− t
]}
≤ exp{−nt2/2}.
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Proof. Let A =
√
nΓ, then A satisfies the conditions in Theorems 21 and 23. We will show that

both s1(A) and sq(A) are Lipschitz functions with constant 1. That is

|s1(A)− s1(B)| ≤ ‖A−B‖2 and |sn(A)− sn(B)| ≤ ‖A−B‖2.

In fact

∣∣∣∣ max
‖x‖2=1

‖Ax‖2 − max
‖x‖2=1

‖Bx‖2
∣∣∣∣ ≤ max

‖x‖2=1
‖(A−B)x‖2

=
√

Λmax(A−B)T (A−B)

≤
√∑

Λi(A−B)T (A−B)

=
√
tr((A−B)T (A−B))

= ‖A−B‖2

min
‖x‖2=1

‖Ax‖2 ≤ min
‖x‖2=1

(‖Bx‖2 + ‖(A−B)x‖2)

≤ min
‖x‖2=1

‖Bx‖2 + max ‖(A−B)x‖2

≤ min
‖x‖2=1

‖Bx‖2 + ‖A−B‖2

Applying Gaussian concentration inequality for Lipschitz functions Theorem , we have

P (s1(A)− Es1(A) ≥ t) ≤ e− 1
2 t

2

P (−sn(A) + Esn(A) ≥ t) ≤ e− 1
2 t

2

P (s1(A) ≥ Es1(A) + t) ≤ e− 1
2 t

2

P (sn(A) ≤ Esn(A)− t) ≤ e− 1
2 t

2

(Note: here we used c in Theorem to be 1/2, which is not shown in this Lecture.) By using

Theorems 23 and 21:

Es1(A) ≤
√
n+
√
q and Esn(A) ≥

√
n−√q,

we have

P (s1(A) ≥
√
n+
√
q + t) ≤ e− 1

2 t
2



61

P (sn(A) ≤
√
n−√q − t) ≤ e− 1

2 t
2

Taking A =
√
nΓ in the last inequality we have

P (
√
ns1(Γ) ≥

√
n+
√
q +
√
nt) ≤ e−n2 t

2

P (
√
nsn(Γ) ≤

√
n−√q −

√
nt) ≤ e−n2 t

2

.

This is to say:

max

{
P

[
s1(Γ) ≥ 1 +

√
q

n
+ t

]
, P

[
sq(Γ) ≤ 1−

√
q

n
− t
]}
≤ exp{−nt2/2}.

Using Theorem 24, we now have some useful results.

½½½nnn25. Let U ∈ Rn×q be a random matrix with elements from the standard normal distribution

(i.e., Uij ∼ N(0, 1), i.i.d.) Assume that q/n→ 0. Let the eigenvalues of 1
nU

TU be Λ1( 1
nU

TU) ≥

. . . ≥ Λq(
1
nU

TU). Then when n is big enough,

P

[
1

2
≤ Λi(

1

n
UTU) ≤ 2

]
≥ 1− 2 exp(−0.03n). (4.1)

íííØØØ2. Let X ∈ Rn×q be a random matrix, of which, the rows are i.i.d. from the normal distribu-

tion with mean 0 and covariance Σ. Assume that 0 < C̃min ≤ Λi(Σ) ≤ C̃max <∞ and q/n→ 0,

then when n is big enough,

P

[
1

2
C̃min ≤ Λi(

1

n
XTX) ≤ 2C̃max

]
≥ 1− 2 exp(−0.03n). (4.2)

Proof. Let U = XΣ−
1
2 , then U satisfies the condition in Lemma 25. Then

P

[
1

2
≤ Λi(

1

n
UTU) ≤ 2

]
≥ 1− 2 exp(−0.03n).

Since

C̃minΛ1(
1

n
UTU) ≤ Λi(

1

n
XTX) ≤ C̃maxΛq(

1

n
UTU),

result (4.2) is obtained immediately.
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4.6 Stein’s Method

4.6.1 James-Stein Estimator

Suppose θ ∈ R is an unknow parameter vector. y1, y2, . . . , yn are n independent observations

normally distributed:

yi ∼ N(θ, σ2I).

How to estimate θ?

Bias-variance trade-off.

MSE(θ̂) = E(θ̂ − θ)2

= E(θ̂ − E(θ̂) + E(θ̂)− θ)2

= var(θ̂) + bias2

θ̂JS =

(
1− (m− 2)σ2

‖ȳ‖2

)
ȳ

Property: James-Stein estimator has smaller MSE than LS estimtor ȳ when m ≥ 3.

4.6.2 Stein’s Method for Concentration Inequalities

Stein’s method was introduced by Charles Stein in the context of normal approximation for

sums of dependent random variables. A general version of Stein.s method for concentration

inequalities was introduced for the first time in the Ph.D. thesis of Sourav Chatterjee. We will

introduce this powerful method here.

½½½nnn26. Suppose (X,X ′) is an exchangeable pair of random variables, that is .

(X,X ′) =d (X ′, X).

Suppose f(x) and F (x, y) are square-integrable functions. F is antisymmetric:

F (X,X ′) = −F (X ′, X).

E [F (X,X ′) | X] = f(X).
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Define

∆(X) =
1

2
E [|(f(X)− f(X ′))F (X,X ′)| | X] .

Then E(f(X)) = 0 and the following concentration results hold for f(X):

1) If E(∆(X)) <∞, then V ar(f(X)) = 1
2E ((f(X)− f(X ′))F (X,X ′)) .

2) Assume that

Eeθf(X)|F (X,X ′)| <∞

for all θ. IF there exists non-negative constant B and C such that

∆(X) ≤ Bf(X) + C, a.s.,

then for any t ≥ 0,

P (f(X) ≥ t) ≤ exp

(
− t2

2C + 2Bt

)
and P (f(X) ≤ −t) ≤ exp

(
− t2

2C

)
.

3) For any positive integer k, we have the following inequality:

E(f(X)2k) ≤ (2k − 1)kE(∆(X)k).

Proof. For any square-integrable function h(x), we have

E(h(X)F (X,X ′)) = E(h(X ′)F (X ′, X)) = −E(h(X ′)F (X,X ′)).

So,

E(h(X)f(X)) = E(h(X)E(F (X,X ′)|X)) = E(h(X)F (X,X ′)) =
1

2
E([h(X)− h(X ′)]F (X,X ′)).

By taking h(x) = 1, we have E(f(X)) = 0. By taking h(x) = f(x), we have E(f2(X)) =

1
2E([f(X)− f(X ′)]F (X,X ′)).

Now we prove 2). Let m(θ) = E(eθf(X)).

m′(θ) = E(eθf(X)f(X)) =
1

2
E(eθf(X) − eθf(X′))F (X,X ′).
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∣∣∣∣ex − eyx− y

∣∣∣∣ =

∫ 1

0

etx+(1−t)ydt

≤
∫ 1

0

tex + (1− t)eydt =
1

2
(ex + ey).

So we must have

|m′(θ)| ≤ 1

2
E(|eθf(X) − eθf(X′)||F (X,X ′)|)

≤ |θ|
4
E
(

(eθf(X) + eθf(X′))|f(X)− f(X ′)F (X,X ′)|
)

=
|θ|
2

(E
(

(eθf(X)∆(X)
)

+ E
(
eθf(X′)∆(X ′)

)
= |θ|E

(
(eθf(X)∆(X)

)
≤ |θ|E(eθf(X)Bf(X) + C)

= B|θ|m′(θ) + C|θ|m(θ)

Since m(θ) is a convex function of θ and m′(0) = 0, so m′(θ) and θ has the same sign. So for

0 ≤ θ < 1/B, the above inequality is equivalent to

d log(m(θ))

dθ
≤ Cθ

1−Bθ

So

log(m(θ)) ≤
∫ θ

0

Cu

1−Bu
du ≤ Cθ2

2(1−Bθ)

P (f(X) ≥ t) ≤ Eeθ[f(X)−t]

= exp(log(m(θ))− θt)

≤ exp(
Cθ2

2(1−Bθ)
− θt)

= exp(
(C + 2Bt)θ2 − 2θt

2(1−Bθ)
)

= exp(− t2

2(C +Bt)
)by taking θ = t

C+2Bt

For θ < 0, we have

−m′(θ) ≤ B|θ|m′(θ) + C|θ|m(θ) < C|θ|m(θ) = −Cθm(θ)
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d log(m(θ))

dθ
≥ Cθ

We have

logm(θ) ≤ Cθ2

2

P (−f(X) ≥ t) ≤ Eeθ[−f(X)−t]

= exp(log(m(−θ))− θt)

≤ exp(
Cθ2

2
− θt)

= exp(− t2

2C
)by taking θ = t

C

Finally, we prove 3).

E(f(X)2k) =
1

2
E((f(X)2k−1)− f(X ′)2k−1)F (X,X ′).

By the fact that

|x2k−1 − y2k−1| ≤ 2k − 1

2
(x2k−2 + y2k−2)|x− y|,

we have

E(f(X)2k) ≤ (2k − 1)E(f(X)2k−2)∆(X) ≤ (2k − 1)(E(f(X)2k))(k−1)/k∆(X)E(∆(X)k)1/K

Example 1. Let Yi, i = 1, . . . , n be independent random variables.

µi = E(Yi) and σ2 = var(Yi).

Let I be chosen uniformly random from {1, 2, . . . , n}, and defining

X ′ =
∑
j 6=I

Yj + Y ′I ,

where Yi, . . . , Yn are independent copies of Y1, . . . , Yn. It can be verified that (X,X ′) is an

exchangeable pair. Let F (x, y) = n(x− y). Then F is an antisymmetric function.



66

E(F (X,X ′) | Y1, . . . , Yn) = E(n(YI − Y ′I ) | Y1, . . . , Yn)

=
∑
i

E(n(YI − Y ′I ) | Y1, . . . , YnI = i)P (I = i|Y1, . . . , Yn)

=
∑
i

(Yi − µi) = X − E(X)

We have

f(X) = X − E(X).

∆(X) =
1

2
E [|(f(X)− f(X ′))F (X,X ′)| | X]

=
1

2
E [|n(X −X ′)(X −X ′)| | X]

=
1

2
E
[
n(YI − Y ′I )2 | X

]
=

1

2

∑
i

E
[
(Yi − Y ′i )2 | X

]

From Theorem 1), we have

var(f(X)) =
1

2

∑
i

E
[
(Yi − Y ′i )2

]
=
∑
i

σ2
i

If |Yi − µi| ≤ ci, for each i, then

E
[
(Yi − Y ′i )2 | X

]
= E

[
(Yi − µi)2 | X

]
+ E

[
(Y ′i − µi)2

]
≤ c2i + σ2

i .

So

∆(X) ≤ 0 ∗ f(X) +
1

2

∑
i

(c2i + σ2
i )

By 2), we have

P (|f(X)− E(f(X))| ≥ t) ≤ 2e
− t2∑

i(c
2
i
+σ2
i
)
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4.7 Homework

1.

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
≥ 0

2. For a non-negative random variable (which can be continuous and discrete), show that

E(X) =

∫ ∞
0

P (X ≥ t)dt

3. Xi, i = 1, . . . , n i.i.d. ∼ N(0, 1). Show that

f(n) :=
√
n− E

√
X2

1 + . . . X2
n

is a decreasing function of n

4. Let U ∈ Rn×q be a random matrix with elements from the standard normal distribution

(i.e., Uij ∼ N(0, 1), i.i.d.) Assume that q/n → 0. Let the eigenvalues of 1
nU

TU be

Λ1( 1
nU

TU) ≥ . . . ≥ Λq(
1
nU

TU). Then when n is big enough,

P

[
1

2
≤ Λi(

1

n
UTU) ≤ 2

]
≥ 1− 2 exp(−0.03n). (4.3)

5. Let Yi, i = 1, . . . , n be independent random variables.

µi = E(Yi) and σ2 = var(Yi).

Let I be chosen uniformly random from {1, 2, . . . , n}, and defining

X ′ =
∑
j 6=I

Yj + Y ′I ,

where Yi, . . . , Yn are independent copies of Y1, . . . , Yn. Show that (X,X ′) is an exchangeable

pair:

P (X ≤ t1, X ′ ≤ t2) = P (X ′ ≤ t1, X ≤ t2).
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5.1 Sign consistency

To define the Lasso estimate, suppose the observed data are independent pairs {(xi, Yi)} ∈ Rp×R

for i = 1, 2, . . . , n following the linear regression model

Yi = xTi β
∗ + εi, (5.1)

where xTi is a row vector representing the predictors for the ith observation, Yi is the correspond-

ing ith response variable, εi’s are independent and mean zero noise terms, and β∗ ∈ Rp. Use

X ∈ Rn×p to denote the n× p design matrix with xTk = (Xk1, . . . ,Xkp) as its kth row and with

Xj = (Xj1, . . . ,Xjn)
T

as its jth column, then

X =



xT1

xT2
...

xTn


= (X1, X2, . . . , Xp) .

Let Y = (Y1, . . . , Yn)
T

and ε = (ε1, ε2, . . . , εn)
T ∈ Rn. The Lasso estimate (?) is then defined as

the solution to a penalized least squares problem (with regularization parameter λ):

β̂(λ) = arg min
β

1

2n
‖Y −Xβ‖22 + λ‖β‖1, (5.2)

where for some vector x ∈ Rk, ‖x‖r = (
∑k
i=1 |xi|r)1/r.

Define

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0.

Define =s such that β̂(λ) =s β
∗ if and only if sign(β̂(λ)) = sign(β∗) elementwise.

We want to know if the Lasso can recover the sparsity pattern correctly. To be precisely, we

introduce the term Sign Consistency:

½½½ÂÂÂ5. The Lasso is sign consistent if there exists a sequence λn such that,

P
(
β̂(λn) =s β

∗
)
→ 1, as n→∞.

This section examines when the Lasso is sign consistent and when it is not sign consistent
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under the sparse Poisson-like model for a nonrandom design matrix X. First, some notation,

xi(S) = eTi X(S),

where ei is the unit vector with ith element one and the rest zero. Because S = {j : β∗j 6= 0} is

the sparsity index set, xi(S) is a row vector of dimension q. Define

β∗(S) = (β∗j )j∈S and
−→
b = sign(β∗(S)).

Suppose the Irrepresentable Condition holds. That is, for some constant η ∈ (0, 1],

∥∥∥∥X(Sc)
T
X(S)

(
X(S)

T
X(S)

)−1−→
b

∥∥∥∥
∞
≤ 1− η. (5.3)

The `∞ norm of a vector, ‖ · ‖∞, is defined as the vector’s largest element in absolute value. In

addition, assume that

Λmin

(
1

n
X(S)

T
X(S)

)
≥ Cmin > 0, (5.4)

where Λmin denotes the minimal eigenvalue and Cmin is some positive constant. Condition (5.4)

guarantees that matrix X(S)
T
X(S) is invertible. These conditions are also needed in ? for sign

consistency of the Lasso under the standard model. Define

Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥∥
(

1

n
X(S)

T
X(S)

)−1−→
b

∥∥∥∥∥
∞

]
≤ λ

[
η (Cmin)−1/2 +

√
qC−1

min

]

with which:

½½½nnn27. Suppose that data (X, Y ) follows linear model described by Equations (5.1) and each

column of X is normalized to l2-norm
√
n. Assume that (5.3) and (5.4) hold. If λ satisfies

M(β∗) > Ψ(X, β∗, λ),

then with probability greater than

1− 2 exp

{
−nλ

2η2

2σ2
+ log(p)

}
,

the Lasso has a unique solution β̂(λ) with β̂(λ) =s β
∗.

Before proving this theorem, we first introduce a lemma about the solution of the Lasso.
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ÚÚÚnnn5. For linear model Y = Xβ∗ + ε, assume that the matrix X(S)
T
X(S) is invertible. Then

for any given λ > 0 and any noise term ε ∈ Rn, there exists a Lasso estimate β̂(λ) which satisfies

β̂(λ) =s β
∗, if and only if the following two conditions hold

∣∣∣∣X(Sc)
T
X(S)(X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

]
− 1

n
X(Sc)

T
ε

∣∣∣∣ ≤ λ, (5.5)

sign

(
β∗(S) + (

1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S)), (5.6)

where the vector inequality and equality are taken elementwise. Moreover, if (5.5) holds strictly,

then

β̂ = (β̂(1), 0)

is the unique optimal solution to the Lasso problem (5.2), where

β̂(1) = β∗(S) + (
1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗)

]
. (5.7)

Proof. The Lasso estimate satisfies the following condition:

∂[
1

2n
‖Y −Xβ‖22 + λ‖β‖1]|β=β̂λ = 0,

that is,

1

n
XT (Y −Xβ̂) + λ−→s = 0,

where −→s j = sign(β̂j(λ)), if β̂j(λ) 6= 0 and −→s j ∈ [−1, 1], if β̂j(λ) = 0. β̂(λ) =s β
∗ if and only if

1

n
X(S)T (Y −X(S)β̂(S)) + λsign(β∗(S)) = 0,

and

| 1
n
X(Sc)T (Y −X(S)β̂(S))| ≤ λ.

By substituting Y with X(S)β∗(S) + ε and solving β∗(S) we complete the proof.

Now we prove Theorem 27.

Proof. Define

−→
b = sign(β∗(S)),
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and denote by ei the vector with 1 in the ith position and zeroes elsewhere. Define

Ui = eTi (
1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λ

−→
b

]
,

Vj = XT
j

{
X(S)(X(S)

T
X(S))−1λ

−→
b −

[
X(S)(X(S)

T
X(S))−1X(S)

T − I)
] ε
n

}
.

By rearranging terms, it is easy to see that (5.5) holds strictly if and only if

M(V ) =

{
max
j∈Sc

|Vj | < λ

}
(5.8)

holds. If we define M(β∗) = minj∈S |β∗j | (recall that S = {j : β∗j 6= 0} is the sparsity index),

then the event

M(U) =

{
max
i∈S
|Ui| < M(β∗)

}
, (5.9)

is sufficient to guarantee that condition (5.6) holds. Finally, a proof of Theorem 27.

This proof is divided into two parts. First we analysis the asymptotic probability of event

M(V ), and then we analysis the event of M(U).

Analysis of M(V ) : Note from (5.8) that M(V ) holds if and only if
maxj∈Sc |Vj |

λ < 1. Each

random variable Vj is Gaussian with mean

µj = λXT
j X(S)(X(S)

T
X(S))−1−→b .

Define Ṽj = XT
j

[
I −X(S)(X(S)

T
X(S))−1X(S)

T
]
ε
n , then Vj = µj + Ṽj . Using condition

(5.3), we have |µj | ≤ (1− η)λ for all j ∈ Sc, from which we obtain that

1

λ
max
j∈Sc

|Ṽj | < η ⇒ maxj∈Sc |Vj |
λ

< 1.

By the Gaussian comparison result, we have

P

[
1

λ
max
j∈Sc

|Ṽj | ≥ η
]
≤ 2(p− q) exp{− λ2η2

2 maxj∈Sc E(Ṽ 2
j )
}.

Since

E(Ṽ 2
j ) =

1

n2
XT
j H[V AR(ε)]HXj ,

where H = I − X(S)(X(S)
T
X(S))−1X(S)

T
which has maximum eigenvalue equal to 1, and

V AR(ε) is the variance-covariance matrix of ε, which is a diagonal matrix with the ith diagonal
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element equal to σ2.

E(Ṽ 2
j ) ≤ σ2

n2
‖Xj‖22 =

σ2

n
.

Therefore,

P

[
1

λ
max
j
|Ṽj | ≥ η

]
≤ 2(p− q) exp

{
−nλ

2η2

2σ2

}
.

So, we have

P

[
1

λ
max
j
|Vj | < 1

]
≥ 1− P

[
1

λ
max
j
|Ṽj | ≥ η

]
≥ 1− 2(p− q) exp

{
−nλ

2η2

2σ2

}
.

Analysis of M(U) :

max
i
|Ui| ≤ ‖(

1

n
X(S)

T
X(S))−1 1

n
X(S)

T
ε‖∞ + λ‖( 1

n
X(S)

T
X(S))−1−→b ‖∞

Define Zi := eTi ( 1
nX(S)

T
X(S))−1 1

nX(S)
T
ε. Each Zi is a normal Gaussian with mean 0 and

variance

var(Zi) = eTi (
1

n
X(S)

T
X(S))−1 1

n
X(S)

T
[V AR(ε)]

1

n
X(S)(

1

n
X(S)

T
X(S))−1ei

≤ σ2

nCmin
.

So, for any t > 0,

P (max
i∈S
|Zi| ≥ t) ≤ 2q exp{− t

2nCmin

2σ2
},

by taking t = λη√
Cmin

, we have

P (max
i∈S
|Zi| ≥

λη√
Cmin

) ≤ 2q exp

{
−nλ

2η2

2σ2

}
.

Recall the definition of Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥( 1
nX(S)

T
X(S)

)−1−→
b

∥∥∥∥
∞

]
, we have

P (max
i
|Ui| ≥ Ψ(X, β∗, λ)) ≤ 2q exp

{
−nλ

2η2

2σ2

}
.
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By condition M(β∗) > Ψ(X, β∗, λ), we have

P (max
i
|Ui| < M(β∗)) ≥ 1− 2q exp

{
−nλ

2η2

2σ2

}
.

At last, we have

P [M(V )& M(U)] ≥ 1− 2p exp

{
−nλ

2η2

2σ2

}

Theorem 27 gives a non-asymptotic result on the Lasso’s sparsity pattern recovery property.

The next corollary specifies a sequence of λ’s that can asymptotically recover the true sparsity

pattern. The essential requirements are that

(1)
nλ2

σ2 log(p+ 1)
→∞ and (2) M(β∗) > Ψ(X, β∗, λ).

Slightly stronger conditions:

(1)
nλ2

σ2 log(p+ 1)
→∞ and (2) M(β∗) > λ(η

√
Cmin +

√
q/Cmin).

Define,

Γ(X, β∗, σ2) =
nη2[M(β∗)]2

8σ2(η C
−1/2
min +

√
q C−1

min)2 log(p+ 1)
.

íííØØØ3. As in Theorem 27, Suppose that data (X, Y ) follows linear model described by Equations

(5.1) and each column of X is normalized to l2-norm
√
n. Assume that (5.3) and (5.4) hold.

Take λ such that

λ =
M(β∗)

2
(
η C

−1/2
min +

√
q C−1

min

) , (5.10)

then β̂(λ) =s β
∗ with probability greater than

1− 2 exp
{
−
(
Γ(X, β∗, σ2, α)− 1

)
log(p+ 1)

}
.

If Γ(X, β∗, σ2)→∞, then P [β̂(λ) =s β
∗] converges to one.

This corollary gives a class of heteroscedastic models for which the Lasso gives a sign consistent

estimate of β∗. This class requires that Γ(X, β∗, σ2)→∞ which means that

SNR :=
n[M(β∗)]2

σ2
= Ω (q log(p+ 1)) , (5.11)
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where an = Ω(bn) means that an grows faster than bn, that is, an/bn →∞. In other words, this

condition requires that SNR grows fast enough.

The next corollary addresses the classical setting, where p, q, and β∗ are all fixed and n

goes to infinity. While this is a straightforward result from Corollary 3, it removes some of

the complexities and leads to good intuition. Since M(β∗) and ‖β∗‖2 do not change with n,

Γ(X, β∗, σ2, α)→∞ in Corollary 3 when n→∞. Then:

íííØØØ4. As in Theorem 27, Suppose that data (X, Y ) follows linear model described by Equations

(5.1) and each column of X is normalized to l2-norm
√
n. Assume that (5.3) and (5.4) hold. In

the classical case when p, q and β∗ are fixed, by choosing λ as in equation (5.10),

P
[
β̂(λ) =s β

∗
]
→ 1

as n→∞.

A more beautiful result:

íííØØØ5. As in Theorem 27, Suppose that data (X, Y ) follows linear model described by Equations

(5.1) and each column of X is normalized to l2-norm
√
n. Assume that (5.3) and (5.4) hold. In

the classical case when p, q and β∗ are fixed, by choosing λ such that nλ2 →∞ and λ→ 0, then

P
[
β̂(λ) =s β

∗
]
→ 1 and ‖β̂(λ)− β∗‖∞ →P 0

as n→∞.

A suitable choice of λ is λ = log n/
√
n. So far the results have given sufficient conditions

for sign consistency of the Lasso. To further understand how the sign consistency of the Lasso

might be sensitive to the heteroscedastic model, the next theorem gives necessary conditions on

the ratio of β∗j to the noise level.

½½½nnn28 (Necessary Conditions). Suppose that data (X, Y ) follows linear model described by

Equations (5.1) and each column of X is normalized to l2-norm
√
n. Assume that (5.4) holds.

(a) Consider 1
nX(S)

T
X(S) = Iq×q. For any j, define

c2n,j =
nβ∗j

2

σ2
. (5.12)
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Define cn = minj cn,j. Then, for sign consistency, it is necessary that cn →∞. Specifically,

P
[
β̂(λ) =s β

∗
]
≤ 1−

exp
{
−c2n/2

}
√

2π(1 + cn)
.

(b) If the Irrepresentable Condition (5.3) does not hold, specifically,

∥∥∥∥X(Sc)
T
X(S)

(
X(S)

T
X(S)

)−1−→
b

∥∥∥∥
∞
≥ 1, (5.13)

then, the Lasso estimate is not sign consistent: P
[
β̂(λ) =s β

∗
]
≤ 1

2 .

Proof. First prove (b). Without loss of generality, assume for some j ∈ Sc, XT
j X(S)

(
X(S)

T
X(S)

)−1−→
b =

1 + ζ, then Vj = λ(1 + ζ) + Ṽj , where Ṽj = −[X(S)
(
X(S)

T
X(S)

)−1

X(S)
T − I] εn is a Gaussian

random variable with mean 0, so P (Ṽj > 0) = 1
2 . So, P (Vj > λ) ≥ 1

2 , which implies that for any

λ, Condition (5.5) (a necessary condition) is violated with probability greater than 1/2.

For claim (a). Condition (5.6),

sign

(
β∗(S) + (

1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S))

is also a necessary condition for sign consistency. Since 1
nX(S)

T
X(S) = Iq×q, (5.6) becomes

sign

(
β∗(S) +

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S)),

which implies that

sign

(
β∗(S) +

1

n
X(S)

T
ε

)
= sign(β∗(S)). (5.14)

Without loss of generality, assume for some j ∈ S, β∗j > 0. Then (5.14) implies β∗j + Zj > 0,

where Zj = eTj
1
nX(S)

T
ε is a Gaussian random variable with mean 0, and variance

var(Zj) = eTj
1

n
X(S)

T
V AR(ε)

1

n
X(S)ej

=
σ2eTj

[
X(S)

T
X(S)

]
ej

n2

=
σ2

n
,
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where the last equality uses the definition of c2n,j in Theorem 2. To summarize,

P [β̂(λ) =s β
∗] ≤ P [β∗j + Zj > 0]

= P [Zj > −β∗j ]

= P [Zj < β∗j ]

= 1−
∫ ∞
β∗j

1√
2πvar(Zj)

exp{− x2

2var(Zj)
}dx

= 1−
∫ ∞
β∗j /
√
var(Zj)

1√
2π

exp{−x
2

2
}dx

≤ 1− 1√
2π

∫ ∞
β∗j /
√
var(Zj)

(
x

1 + x
+

1

(1 + x)2
) exp{−x

2

2
}dx

= 1−
exp

{
− β∗j

2

2var(Zj)

}
√

2π(1 +
β∗j√
var(Zj)

)

= 1−
exp

{
− c

2
n,j

2

}
√

2π(1 + cn,j)
.

Statement (a) would hold for the homoscedastic model by removing diag(|Xβ∗|) from the

denominator in Equation (5.12). Equation (5.12) can be viewed as a comparison of the signal

strength (β∗j
2) to the noise level (var(XT

j ε)). Theorem 28 shows that the signal strength needs

to be large relative to the noise level.

Statement (b) says that the Irrepresentable Condition (5.3) is necessary for the Lasso’s sign

consistency. This necessary condition can also be found in both Zhao and Yu (2006) and Wain-

wright (2009). Zhao and Yu (2006) points out that the Irrepresentable Condition is almost

necessary and sufficient for the Lasso to be sign consistent under the standard homosedastic

model when p and q are fixed. Wainwright (2009) says that it is necessary for the Lasso’s sign

consistency under the standard model for any p and q.

5.2 Piecewise Linear Solution

½½½nnn29 (Piecewise Linear Solution). The Lasso solution is piecewise linear when λ varies from

∞ to 0.

Proof. It is sufficient to prove

d β̂(λ)

d λ
is piecewise constant.



79

For every value of λ we have a set of “active” variables

A := {j : β̂j(λ) 6= 0},

such that

XT
A(Y −XAβA)− λsign(βA) = 0

|XT
Ac(Y −XAcβAc)| ≤ λ

So on this set A, we have

βA = [XT
AXA]−1(XT

AY − λsign(βA))

So when A does not change, βA will change linearly with λ.

5.3 The Lasso and path Algorithms

5.3.1 LARS

By the piece-wise linear properties, we can have the following algorithm: 1. Initialize :

β = 0,A = arg max
j
|XT

j Y |, γA = −sign(XT
AY ), γAc = 0

2. While(XT (Y −Xβ) 6= 0): (a)

d1 = min{d > 0 : |[XT
j (Y −X(β + dγ))]| = |[XT

A(Y −X(β + dγ))]|, j ∈ Ac}

d2 = min{d > 0 : (β + dγ)j = 0, j ∈ A}

Find step length: d = min(d1, d2).

(b) Take step: β = β + dγ

(c) Update the active set: If d = d1, then add variable(s) attaining equality at d to A. If

d = d2, then remove variable(s) attaining 0 at d from A.

(d) Calculate new direction:

γA = (XT
AXA)−1sign(βA) and γAc = 0
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5.3.2 Coordinate Descent

Coordinate descent for the Lasso

min
1

2n
‖Y −Xβ − γ‖+ λ‖β‖

γk = mean(Y −Xβ) βj = S( 1
n

∑
xij(yi −

∑
` 6=j xi`β`, λ)

Coordinate descent for L1 Logistic regression

Pr(Y = 1) =
1

1 + e−(β0+xT β)

log-likelihood:

`(β0, β) =
∑

yi(β0 + xTi β)− log(1 + eβ0+xTi β)

Iteratively reweighted least squares: Suppose the current estimate is (β̃0, β̃), then a quadratic

approximation to the log-likelihood is:

`Q(β0, β) =
∑

wi(zi − βo − xTi β)2 + C,

where

zi = β̃0 + xTi β̃ +
yi − p̃i
p̃i(1− p̃i)

wi = p̃i(1− p̃i)

5.4 Homework

1. In LARS algorithm described in Section 5.3.1, for j ∈ Ac, if 0 < d ≤ d1, where

d1 = min{d > 0 : |[XT
j (Y −X(β + dγ))]| = |[XT

A(Y −X(β + dγ))]|},

then
∣∣[XT

j (Y −X(β + dγ))]
∣∣ ≤ λ− d, where λ = |[XT

j (Y −X(β))]|, j ∈ A

2. Describe the detailed LARS algorithm for a linear model with three predictors:

Y = β1X1 + β2X2 + β3X3 + ε.

(1) Write the detailed LARS algorithm.

(2) Do simulations. Generate Xj from N(0, 1) for j = 1, 2, 3. Generate ε from N(0, 0.04).

Set β1 = 1, β2 = 2 and β3 = 0. Plot the solution path obtained from (1).
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(3) Compare your solution path with the solution path obtained from LARS package and

write up your findings.

3. Show that a quadratic approximation of the following expression

`(β0, β) =
∑

yi(β0 + xTi β)− log(1 + eβ0+xTi β)

at (β̃0, β̃), is:

`Q(β0, β) =
∑

wi(zi − βo − xTi β)2 + C,

where

zi = β̃0 + xTi β̃ +
yi − p̃i
p̃i(1− p̃i)

wi = p̃i(1− p̃i),

and C is a constant which does not depend on unknown parameters.
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Chapter 6

Model Assessment and Selection

83
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6.1 Generalization Errors

6.1.1 Continuous Response

We have a target variable Y , a vector of inputs X, and a prediction model f̂(X) that has been

estimated from a training set T . The loss function for measuring errors between Y and f̂(X) is

denoted by L(Y, f̂(X)). A typical choice of L(·, ·) is

L(Y, f̂(X)) = (Y − f̂(X))2.

Test error, also referred to as generalization error, is the prediction error over an independent

test sample:

ErrT = E(L(Y, f̂(X))|T ),

where both X and Y are drawn randomly from their joint distribution.

A related quantity is

Err = E(L(Y, f̂(X))),

which averages over everything that is random, including the randomness in the training set that

produced f̂ .

Training error is the average loss over the training sample:

¯err =
1

N

∑
i

L(yi, f̂(xi)).

Note that training error is not a good estimate of the test error.

Example: Consider a linear regression model with p parameters, fit by least squares to a

set of training data (x1, y1), . . . , (xN , yN ) drawn at random from a population. Let β̂ be the

least squares estimate. Suppose we have some test data (x̄1, ȳ1), . . . , x̄M , ȳM ). Let Ltrain =

1
N

∑
iE(yi − xTi β̂)2 and Ltest = 1

M

∑
iE(ȳi − x̄Ti β̂)2. Then

Ltrain ≤ Ltest.

6.1.2 Categorical Response

Typical loss functions:

L(G, Ĝ(X)) = I(G 6= Ĝ(X))

L(G, p̂(X)) = −
∑

I(G = k) log p̂k(X).
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Test error is ErrmathcalT = E(L(G, Ĝ(X))|T ).

6.1.3 Splits of Data

We have two separate goals: 1) Model slection: estimating the performance of different models

in order to choose the best one.

2) Model assessment: having chosen a final model, estimating its prediction error (general-

ization error) on new data.

If we have enough data, the best approach is to randomly divide the dataset into three parts:

a training set, a validation set and a test set. The training set is used to fit the models; the test

set is used for assessment of the generalization error for model selection; the test set is used for

assessment of the generalization error of the final chosen model.

6.2 Bias-Variance Tradeoff

6.2.1 Bias-Variance Decomposition

Y = f(X) + ε,

where E(ε) = 0 and var(ε) = σ2. Using squared-error loss, we can derive the expected prediction

error at an input point X = x0,

Err(x0) = E((Y − f̂(x0))2)

= E(f(x0)− f̂(x0) + ε)2

= σ2 + (Ef̂(x0)− f(x0))2 + E(f̂(x0)− Ef̂(x0))2

= σ2 +Bias2 + V ariance

6.2.2 Bias-Variance tradeoff

We show the bias-variance tradeoff via a simple example.

Y = Xβ∗ + ε,

X ′X = I, E(ε = 0), E(σ2) = σ2.
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Then the solution of ridge regression is

β̂ =
X ′Y

1 + λ
.

For a new test point x0, the prediction error is

Err(x0) = E(y − x′0β̂)2 = σ2 +Bias2 + V ariance,

where

Bias2 = (x′0β
∗ − Ex′T0 β̂)2

= (x′0β
∗ − x′T0 β∗/(1 + λ))2

= (1− 1

1 + λ
)2(x′T0 β

∗)2( increasing with λ)

V ariance = E(x′0β̂ − Ex′T0 β̂)2

=
σ2

(1 + λ)2
x′0x0( decreasing with λ)

6.3 Cross Validation

6.3.1 K-fold Cross Validation

We split the data into K roughly equal-sized parts. For the kth part, we fit the model to the other

K−1 parts of the data, and calculate the prediction error of the fitted model when predicting the

kth part of the data. We do this for k = 1, 2, . . . ,K and combine the K estimates of prediction

error.

Question: Is the CV error a good estimate of generalization error?

6.4 Bootrstrap

We have b = 1, . . . , B bootstrap datasets, from each dataset we have the model f b(x) which can

be used to give prediction error on xi, L(yi, f̂
b(xi)).

ˆErrboot =
1

B

1

M
L(yi, f̂

b(xi)).
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How to overcome the correlations between different samples? 0.632 bootstrap.

ˆErrboot ← 0.368 ˆerr + 0.632 ˆErrboot,

where ˆerr is the training error.

6.5 Homework

Consider a linear regression model with p parameters, fit by least squares to a set of training data

(x1, y1), . . . , (xN , yN ) drawn at random from a population. Let β̂ be the least squares estimate.

Suppose we have some test data (x̄1, ȳ1), . . . , x̄M , ȳM ). Let Ltrain = 1
N

∑
iE(yi − xTi β̂)2 and

Ltest = 1
M

∑
iE(ȳi − x̄Ti β̂)2. Then

Ltrain ≤ Ltest.
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Chapter 7

Gaussian Graphical Models

89
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7.1 Gaussian Graphical Models

Graphical model is used to describe the relationship between variables. A graph is denoted by

(E, V ), where E is the node (variable) set and V ⊂ E × E is the edge set. If Xi is independent

of Xj given all of the other variables, then there is no edges between node Xi and Xj .

½½½nnn30. X = (X1, . . . , Xp) follows a joint normal distribution N(0,Σ) with Σ > 0. The following

three properties are equivalent:

1. There is no edge between Xi and Xj in the Gaussian Graphical model;

2.

Σ−1(i, j) = 0;

3. E(Xj |XV \j) =
∑
k 6=j βjkXk, βji = 0

Before proving this theorem, we first give a result about partitioned matrices. Consider a

general partitioned matrix

M =

 E F

G H

 ,

where we assume that both E and H are invertible. Then we have

½½½nnn31.

 E F

G H


−1

=

 E−1 + E−1F (M/E)−1GE−1 −E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1


=

 (M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 +H−1G(M/H)−1FH−1


where

M/E = H −GE−1F and M/H = E − FH−1G

Proof.

 I 0

−GE−1 I


 E F

G H


 I −E−1F

0 I

 =

 E 0

0 H −GE−1F
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So,

 E F

G H


−1

=

 I −E−1F

0 I


 E−1 0

0 [H −GE−1F ]−1


 I 0

−GE−1 I


=

 E−1 + E−1F (M/E)−1GE−1 −E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1


By

 I −FH−1

0 I


 E F

G H


 I 0

−H−1G I

 =

 E − FH−1G 0

0 H

 ,

we have another equation.

Now we prove Theorem 30.

Proof. We partition Σ the following way:

Σ =

 σii ΣiV2

ΣV2i ΣV2V2

 ,

where V2 = V \ {i} and V = {1, 2, . . . , p}. Correspondingly, we write

Σ−1 =

 dii DiV2

DV2i DV2V2

 ,

From Theorem 31, we have

DiV2
= −diiΣiV2

[ΣV2,V2
]−1.

Now we partition ΣV2,V2
in the following way:

ΣV2,V2 =

 σjj ΣjB

ΣBj ΣBB

 ,

where B = V \ {i, j}. Correspondingly, we write

[ΣV2,V2
]−1 =

 d̃jj D̃jB

D̃Bj D̃BB

 ,
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From Theorem 31, we have

D̃Bj = −d̃jj [ΣB,B ]−1ΣBj .

We have

Σ−1(i, j) = DiV2 [j]

= −dii[Σij d̃jj + ΣiBD̃Bj ]

= −dii[σij d̃jj − d̃jjΣiB [ΣB,B ]−1ΣBj ]

= −diid̃jj [σij − ΣiB [ΣB,B ]−1ΣBj ]

Not that XA|XB is a joint Gaussian random variable and

V ar(XA|XB) = ΣA,A − ΣA,BΣ−1
B,BΣB,A(homework)

Xi ⊥ xj |otheres if and only of [cov(XA|XB)]i,j = 0 that is

σij − ΣiB [ΣBB ]−1ΣB,j = 0,

which is equivalent to Σ−1(i, j) = 0.

E(Xi|XV \i) =
∑
k 6=i βikXk ⇐⇒

βik = argminE(Xi −
∑
k 6=i

βikXk)2

So

βiV2
= ΣiV2

(ΣV2V2
)−1 = −DiV2

/dii.

So we have βji = 0 is equivalent to Σ−1[i, j] = 0.

7.2 Neighborhood selection

For each j, let

θj,λ = arg min
θ
‖Xj −Xθ‖22 + λ‖θ‖1

ne(j, λ) = {j : θj,λ 6= 0}
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7.3 L1-loglikelihood

likelihood

f(Σ) = Πn
i=1

1

(2π)p/2|Σ1/2|
exp{−1

2
xTi (Σ)−1xi} (7.1)

`(Σ) = log(|Σ−1|)− tr(Σ−1S, )

where

S =
1

n

∑
xix

T
i

Σ̂−1 = arg min
C
− log |C|+ tr(CS) + λ

∑
|Cij |

7.4 Graphical Lasso

We want to solve the following optimization problem:

Θ̂ = min
Θ
− log |Θ|+ tr(ΘS) + λ

∑
|Θij |.

Let W = Θ̂−1 and partition W as follows:

W =

 W11 w12

w21 w22

 .

We also partition S accordingly:

S =

 S11 s12

s21 s22

 .

We solve W column by column using block coordinate descent.

ÚÚÚnnn6.

∂

∂Θ
− log |Θ|+ tr(ΘS) = −Θ−1 + S.

Proof.

∂

∂Θij
tr(ΘS) =

∂

∂Θij

∑
k

∑
l

ΘklSlk = Sji
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∂

∂Θij
log |Θ| = 1

|Θ|
∂

∂Θij
|Θ|.

Note that

|Θ| =
∑
j

(−1)i+jΘijMij ,

where Mij is the determinant of the matrix obtained by removing the ith row and jth column

of Θ. So

∂

∂Θij
|Θ| = (−1)i+jMij .

Denote the adjugate matrix adj(A) with the (i, j) element (−1)i+jMji, we have A×adj(A) =

|A|I, equivalently A−1 = adj(A)
|A|

So

1

|Θ|
∂

∂Θ
|Θ| = 1

|Θ|
adj(Θ)T = Θ−1.

½½½nnn32. W11 fixed, we have w12 = W11β̂, and w22 = s22 + λ where

β̂ = min
β

1

2
‖W 1/2

11 β −W−1/2
11 S12‖22 + λ‖β‖1. (7.2)

Proof. Set Subgradient of (7.1) to be zero, by Lemma 6 : W − S − λΓ = 0, where Γ = sub(Θ).

Since Θii is always greater than 0, we have Γ22 = 1. So w22 − s22 − λ = 0 and we have

w22 = s22 + λ. W12 satisfies

W12 − S12 − λγ12 = 0. (7.3)

By setting subgradient of (7.2), we have

W
1/2
11 (W

1/2
11 β −W−1/2

11 S12)− λsign(β) = 0

β satisfies

W11β − S12 + λs = 0 (7.4)

If (β̂, s) solves (7.4), then W12 = W11β̂ and γ12 = −s solves (7.4). To show this, we only need

to verify −s is a subgradient of Θ12. Expending

WΘ = I,
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we have  W11 W12

W21 w22


 Θ11 Θ12

Θ21 θ22

 =

 I 0

0 I


W11Θ12 + w12θ22 = 0,

so

Θ12 = −W−1
11 w12θ22,

sign(Θ̂12) = −sign(β̂).

So −s is a subgradient of Θ.

while not converged do

Start with W = S + λI. The diagonal elements of W will not change any more.

For each j = 1, . . . , p solve the Lasso problem (7.4) and obtain β̂. Fill in the corresponding

row and column of W with w12 = W11β̂

end while

7.4.1 Update of Θ

By

W11θ12 + w12θ22 = 0

and

w21θ12 + w22θ22 = 1

We have

θ12 = −W−1
11 w12θ22 = −β̂θ22

θ22 = 1/[w22 − w21W
−1
11 w12] = 1/[w22 − w21β̂]
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Dictionary Learning
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8.1 Dictionary Learning

Consider a signal x ∈ Rn and a fixed dictionary D = [d1, . . . , dk] ∈ Rn×k (allowing k > n,

making the dictionary overcomplete.) In this setting, sparse coding with an `1 regularization

amounts to computing

α̂ = arg min
α∈Rk

‖x−Dα‖+ λ1‖α‖1.

Now we consider a supervised setting, where the signal may belong to nay of p different

classes. We model the signal x using a single shared dictionary D and a set of p decision

functions gi(x, α, θ), i = 1, . . . , p acting on x and its sparse code α over D. A possible choice of

gi is gi(x, α, θ) = wTi α+ bi.

Recall Multi-logistic regression:

P (Yi = k|xi) =
exp(gi(x, α, θ))∑K
j=1 exp(gj(x, α, θ))

=
1∑K

j=1 exp [gj(x, α, θ)− gi(x, α, θ)]

Let us assume that we are given p sets of training data Ti, i = 1, 2, . . . , p such that all samples

in Ti belongs to class i. A direct method for learning unknown parameters is via maximum

likelihood:

max
∑
i

logP (yi|Xi) = max

p∑
i=1

∑
j∈Ti

− log
∑
k

exp [gk(xj , α, θ)− gi(xj , α, θ)] ,

equivalently,

min

p∑
i=1

∑
j∈Ti

log
∑
k

exp [gk(xj , α, θ)− gi(xj , α, θ)] ,

where α is the sparse representation of x. A joint optimization problem – supervised dictionary

learning is defined as

min

p∑
i=1

∑
j∈Ti

log
∑
k

exp [gk(xj , α, θ)− gi(xj , α, θ)] + λ0‖xj −Dαj‖22 + λ1‖αj‖1 + λ2‖θ‖22, (8.1)

such that

‖Dj‖2 ≤ 1.

Define

Si(α, x,D, θ) = log
∑
k

exp [gk(xj , α, θ)− gi(xj , α, θ)] + λ0‖xj −Dαj‖22 + λ1‖αj‖1
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. For observation x, it should be classifies into class i∗ defined as:

i∗(α, x,D, θ) = arg min
k
Sk(α, x,D, θ)

Equation (8.1) can be written as

min

p∑
i=1

∑
j∈Ti

Si(αj , xj , D, θ) + λ2‖θ‖22,

such that

‖Dj‖2 ≤ 1.

Note that we not only hope Si(x) to be small, we also hope that Si(x) is smaller than Sj(x)

for all j, if x ∈ Ti. Softmax function satisfies this purpose. The softmax function is defined as:

Ci(x1, x2, . . . , xp) = − log
exi∑
j xj

= log(
∑
j

exj−xi).

So we can have another objective function:

min

p∑
i=1

∑
j∈Ti

Ci(Sl(αj , xj , D, θ)
p
l=1) + λ2‖θ‖22,

such that

‖Dj‖2 ≤ 1.

A model combines the above two models is given by

min

p∑
i=1

∑
j∈Ti

µCi(Sl(αj , xj , D, θ)
p
l=1) + (1− µ)Si(αj , xj , D, θ) + λ2‖θ‖22,

such that

‖Dj‖2 ≤ 1.

8.2 Optimization Procedure
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Algorithm 4 Sparse Dictionary Learnng

Input: p (number of classes); n (signal dimensions); Ti, i = 1, . . . , p (training signals); k (size of
the dictionary); λ0, λ1, λ2; µ

Output: D ∈ Rn×k; θ
1: Initialization: Set D to be a random Gaussian matrix. Set θ to be zero.
2: Repeat until convergence
3: Supervised sparse coding: For all l = 1, . . . , p, all j ∈ Ti, compute

α̂jl = arg min
α
Sl(α, xj , D, θ) (8.2)

4: Dictionary update. Solve, under constraint ‖dl‖2 ≤ 1,

min

p∑
i=1

∑
j∈Ti

µCi(Sl(α̂lj , xj , D, θ)
p
l=1) + (1− µ)Si(α̂ji, xj , D, θ) + λ2‖θ‖22, (8.3)

8.2.1 Supervised Sparse Coding

Now we solve Equation (8.2). Recall the definition of Si.

Si(α, x,D, θ) = log
∑
k

exp [gk(xj , αij , θ)− gi(xj , α, θ)] + λ0‖xj −Dαj‖22 + λ1‖αj‖1

= ci(A
Tαij + b) + λ0‖xj −Dαj‖22 + λ1‖αj‖1

When D and θ are fixed, this is a Lasso problem. Coordinate descent can be used to solve

this problem.

8.2.2 Dictionary Update

A local minimum can be obtained using projected gradient descent by taking partial derivatives

to be zeros with respect to D and θ.

8.3 Application

Digits recognition
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9.1 PCA

PCA is an unsupervised method, which is widely used in data processing and dimensionality

reduction. However, PCA suffers from the fact that each principal component is a linear combi-

nation of all the original variables, thus it is often difficult to interpret the results. We show that

PCA can be formulated as a regression type optimization problem and thus the sparse loadings

can be obtained via the Lasso.

PCA seeks the linear combination of the original variables such that the derived variables

capture the maximal variance. PCA can be done via the SVD of the data matrix. In detail, let

the data X be an n× p matrix, where n and p are the number of observations and the number

of variables, respectively. Assume that the column means of X are all 0. Suppose we have the

SVD of X,

1√
n
X = UDV T .

Then UD = [U1D11, . . . , UpDpp] are the principle components and the columns of V are the

corresponding loadings of the principle components. The variance of the ith PC is D2
ii. Usually

the first q(� p) components are used to represent the data and so dimensionality reduction is

achieved.

Some comments to the above paragraph: The first component seeks the combination of X,

such that it has the maximum variance:

β(1) = arg max
β

var(Xβ) ≈ arg max
β

1

n
βX ′Xβ

So β(1) is the first eigen vector of

1

n
X ′X = V D2V T .

β(1) = V [:, 1]. The loadings of the other PCs are the columns of V . That is β(i) = V [:, i].

Note that

1√
n
XV = UD,

so

1√
n
XV [:, i] = U [:, i]Dii

V ar(XV [:, i]) = D2
ii.
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9.2 Direct Sparse Approximations

We first discuss a simple regression approach to PCA.

½½½nnn33. Let

X = UDV T .

For all i, denote Yi = UiDii. Yi is the ith PC. ∀ λ > 0, suppose β̂ridge is the ridge estimate given

by

β̂ridge = arg min
β
|Yi −Xβ|+ λ‖β‖22.

Let v̂ =
β̂ridge

‖β̂ridge‖2
, then

v̂ = Vi.

Proof.

β̂ridge = (X ′X + λI)−1X ′UiDii

= V [D2 + λI]−1V TX ′XVi

= V [D2 + λI]−1V TV D2V TVi

= V [
D2

D2 + λI
]V TVi

= Vi
D2
ii

D2
ii + λ

Now let us consider the following Elastic net problem by adding `1 penalty to the above

regression problem, we have

β̂ = arg min
β
|Yi −Xβ|+ λ1‖β‖1 + λ2‖β‖22.

We call

Vi =
β̂

‖β̂‖2
,

an approximation to Vi and XVi ith approximate PC.

Based on the above results, we can have a two stage sparse PCA algorithm: (1) perform PCA

(2) obtain the sparse approximation. We will give another “self-contained” Sparse PCA.
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9.3 Self-contained Sparse PCA

½½½nnn34. Let xTi denote the ith row vector of the matrix X. Let α and β are both p× 1 matrices.

For any λ > 0, let

(α̂, β̂) = arg min
α,β

∑
i

‖xi − αβTxi‖22 + λ‖β‖22,

such that ‖α‖22 = 1. Then β̂ ∝ V1.

Proof.

∑
i

‖xi − αβTxi‖22 + λ‖β‖22 =
∑
i

xTi (I − αβT )T (I − αβT )xi

= tr((I − αβT )T (I − αβT )
∑

(xix
T
i )

= tr(I − βαT − αβT + βαTαβT )XTX

= tr(X ′X) + tr(βTXTXβ)− 2tr(αTXTXβ)

For a fixed α, the solution of β̂ is

β̂ = (XTX + λ)−1XTXα

α̂ = arg max
α

αT (XTX)(XTX + λI)−1XTXα

such that αTα = 1. By X = UDV T , we have

(XTX)(XTX + λI)−1XTXα = V [
D4

D2 + λ
]V T ,

so α̂ = sV1 and β̂ = s
D2

11

D2
11+λ

V1, where s can be 1 or −1.

½½½nnn35. Suppose we are considering the first k PCs. Let xi denote the ith row vector of the

matrix X. Let α and β are both p× k matrices. For any λ > 0, let

(α̂, β̂) = arg min
α,β

∑
i

‖xTi − αTβxTi ‖22 + λ‖β‖22,

such that ‖α‖22 = Ik. Then β̂j ∝ Vj , for j = 1, 2, . . . k.
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Proof.

∑
i

‖xi − αβTxi‖22 + λ‖β‖22 =
∑
i

xTi (I − αβT )T (I − αβT )xi

= tr((I − αβT )T (I − αβT )
∑

(xix
T
i )

= tr(I − βαT − αβT + βαTαβT )XTX

= tr(X ′X) + tr(βTXTXβ)− 2tr(αTXTXβ)

= tr(X ′X) +
∑
j

tr(βTj X
TXβj)− 2tr(αTj X

TXβj)

For a fixed α, the solution of β̂ is

β̂j = (XTX + λ)−1XTXαj ,

or equivalently

β̂ = (XTX + λ)−1XTXα.

α̂ = arg max
α

αT (XTX)(XTX + λI)−1XTXα

such that αTα = Ik. By X = UDV T , we have

(XTX)(XTX + λI)−1XTXα = V [
D4

D2 + λ
]V T ,

so α̂ = sV [:, 1 : k] and β̂j = sj
D2
jj

D2
jj+λ

Vj .

So a Sparse PCA can be obtained via:

(α̂, β̂) = arg min
α,β

∑
i

‖xTi − αTβxTi ‖22 + λ‖β‖22 +
∑
j

λ1j‖βj‖1.

9.4 Numerical Solution

For a fixed α, β is obtained via the following elastic net:

min
βj

tr(X ′X) + tr(βTj X
TXβj)− 2tr(αTj X

TXβj) + λ1j‖βj‖1
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For fixed β, α is obtained via

max tr(αT (XTX)β),

such that

αTα = I.

½½½nnn36. Let A and B are two m × k matrices and B has rank k. Consider the following

optimization problem:

Â = arg max
A

tr(ATB), such that ATA = Ik.

Suppose the SVD of B is B = UDV T , then Â = UV T .

Proof. The constrain ATA = Ik is equivalent to k(k+1)
2 constraints:

ATi Ai = 1

ATi Aj = 0, i > j.

Using Lagrangian multiplier method, we define

L =
∑
i

BTi Ai +
∑
i

1

2
λii(A

T
i Ai − 1) +

∑
i>j

λij(A
T
i Aj).

Setting ∂L
∂Aj

= 0, we have

Bi = λiiαi +
∑
j>i

λijαj = 0.

So

B = AΛ.

A = BΛ−1.

tr(ATB) = trΛ−TBTB = trΛ−1V D2V T = trV TΛ−1V D2.

Note that

ATA = Λ−TBTBΛ−1 = Λ−TV D2V TΛ−1 = Ik

Let C := V TΛ−1V. Then

ATA = CTD2C = I =⇒
∑

C2
ijD

2
ii = 1.
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tr(AB) = tr(CD2) =
∑
i

CiiD
2
ii ≤

∑
ii

Dii.

Cii = 1/Dii and Cij = 0.

So

Λ−1 = V CV T = V D−1V T .

A = BΛ−1 = UDV TV D−1V T = UV T .
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Boosting is a general method for improving the accuracy of any given learning algorithm. In

this chapter we first introduce the boosting algorithm AdaBoost, and explains the underlying

theory of boosting. Then we introduce the L2-boosting algorithm and a statistical view of

boosting.

10.1 Adaboost

The adaboost is introduced first by Freund and Schapire, 1995. It takes as input a training set

(x1, y1), . . . , (xn, yn), where each xi belongs to some domain or instance space, and each label yi

is in some label set Y . Let’s first assume yi ∈ {−1, 1}. We define F (x) =
∑M
m=1 cmfm(x) where

each fm(x) is a classifier producing values 1 or −1 and cm are constants; the corresponding pre-

diction is sign(F (x)). The AdaBoost procedure trains the classifier fm(x) on weighted versions

of the training sample, giving higher weight to cases that are currently misclassified. This is

done for a sequence of weighted samples, and then the final classifier is defined to be a linear

combination of the classifiers from each stage. The adaboost algorithm is described in Algorithm

5.

Algorithm 5 Adaboost Procedure

Input: (x1, y1), . . . , (xn, yn), where xi ∈ Rp, yi ∈ {−1, 1}.
1: Initialization: wi = 1/n, for i = 1, . . . , n.
2: for m = 1, . . . ,M do
3: Estimate the classifier fm(x) from the training data with weights wi.
4: Compute the error:

em = Pri∼w[ht(xi) 6= yi] =
∑
i

wi1yi 6=fm(xi).

5: Choose cm = 1
2 log

(
1−em
em

)
6: Update:

wi =
wi exp(−cmyifm(xi))

Zm

where Zm is a normalization factor,such that
∑
i wi = 1.

7: end for
8: Output the final classifier:

sign(

M∑
m=1

cmfm(x)).

For a not bad “weak learner”, em ≤ 1
2 , so cm ≥ 0. So Step 6 increases the weight for

misclassified samples.
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Algorithm 6 Confidence Rated Adaboost Procedure

Input: (x1, y1), . . . , (xn, yn), where xi ∈ Rp, yi ∈ {−1, 1}.
1: Initialization: wi = 1/n, for i = 1, . . . , n.
2: for m = 1, . . . ,M do
3: Estimate the “confidence rated” classifier fm(x) from the training data with weights wi.
4: Compute the error:

em = Pri∼w[ht(xi) 6= yi] =
∑
i

wi1yi 6=fm(xi).

5: Choose cm = 1
2 log

(
1−em
em

)
6: Update:

wi =
wi exp(−cmyifm(xi))

Zm

where Zm is a normalization factor,such that
∑
i wi = 1.

7: end for
8: Output the final classifier:

sign(

M∑
m=1

cmfm(x)).

10.2 Boosting — a Statistical View

In this section we show that the boosting algorithms are stage-wise estimation procedures for

fitting an additive logistic regression model.

½½½nnn37. The AdaBoost algorithm produces adaptive Newton updates for minimizing E(e−yF (x)).

Proof. Let J(F ) = E(e−yF (x)). Suppose we have a current estimate F (x) and seek an improved

estimate F (x) + cf(x).

ĉ = arg min
c
E(e−y[F (x)+cf(x)])

= arg min
c
Ewe

−ycf(x)

=
1

2
log

em
1− em

.

where w = e−yF (x)/Ee−yF (x) and em = Ew[1y 6=f(x)].

Ewe
−ycf(x) = Ew[1y 6=f(x)]e

c + Ew[1y=f(x)]e
−c

= eme
−c + (1− em)ec.

By letting the derivative to be zero, we have c = 1
2 log em

1−em .

In the next iteration, the new weight is proportional to e−y[F (x)+ĉf(x)] = w× eĉyf(x) followed
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by a normalization.

10.3 Using the log-likelihood criteria

Let y∗ = (y + 1)/2 and

p(x) := P (y∗ = 1|x) =
eF (x)

eF (x) + e−F (x)
.

P (y∗|x) =
e2y∗F (x)

1 + e2F (x)
.

Then expected log-likelihood is

`(F ) = E[2y∗F (x)− log(1 + exp(2F (x))].

Let

f̂ = arg min
f
`(F + f) = arg min

f
E[2y∗(F (x) + f(x)]− log(1 + exp(2F (x) + 2f(x))]

Note that

`(F + f) = `(F ) + `′(F )f +
1

2
`′′(F ),

where

`′(F ) = 2E(y∗ − p(x)),

and

`′′(F ) = −4p(x)(1− p(x)).

So, the Newton update for f(x) is

f̂(x) = − `
′(F )

`′′(F )
=

1

2

E(y∗ − p(x))

p(x)(1− p(x))
=

1

2
Ew

(y∗ − p(x))

p(x)(1− p(x))
,

where w = p(1− p) equivalently

f̂(x) = arg min
f
Ew(

(y∗ − p(x))

p(x)(1− p(x))
− f(x))2.

Finally we have the logitBoos algorithm as follows:
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Algorithm 7 LogitBoost Procedure

Input: (x1, y1), . . . , (xn, yn), where xi ∈ Rp, yi ∈ {−1, 1}.
1: Initialization: wi = 1/n, for i = 1, . . . , n. F = 0 and probability estimates pi = 1/2.
2: for m = 1, . . . ,M do
3: Compute the working response and weights

zi =
y∗i − pi
pi(1− pi)

wi = pi(1− pi).

4: Estimate fm(x) by weighted least-squares fitting of z to x.
5: Update:

F (x) = F (x) +
1

2
fm(x) and p(x)

6: end for
7: Output the final classifier:

sign(

M∑
m=1

cmfm(x)).

10.4 Boosting with the L2-Loss

From the above sections, we can see that the task of the Boosting algorithm is to estimate a

function F : Rp → R, minimizing an expected cost:

E(`(y, F )).

The most prominent examples for `(·, ·) are:

`(y, F ) = e−yF with y ∈ {−1, 1}; AdaBoost

`(y, F ) = log{exp(2yF )/(1 + exp(2F ))} with y ∈ {0, 1}; LogitBoost

`(y, F ) = (y − F )2/2 with y ∈ R or y ∈ {−1, 1}; L2-boost.

For L2Boost, the update of f after F (X) is known is

f̂ = arg min
f
E(Y − F (X)− f |X)2/2 = arg min

f
E(Res− f |X).

So the L2Boost procedure can be described as follows:

L2boosting is nothing else than repeated least squares fitting of residuals. Generally speaking,

we hope the weak learner to be simple.
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Algorithm 8 L2Boost Procedure

Input: (x1, y1), . . . , (xn, yn), where xi ∈ Rp, yi ∈ {−1, 1}.
1: Initialization: wi = 1/n, for i = 1, . . . , n. F = 0.
2: for m = 1, . . . ,M do
3: Estimate fm(x) by least-squares fitting of Y − F (x) to x.
4: Update:

F (x) = F (x) + fm(x)

5: end for
6: Output the final learner:

M∑
m=1

fm(x).

10.5 Path following algorithms using ε-Boosting

10.5.1 Gradient Descent View of Boosting

Given data Zi = (Yi, Xi), i = 1, . . . , n. We want to learn a model in the following family:

F = {F : F (x) =
∑
j

βjhj(x).}

To find an estimate of β, we set up an empirical minimization problem:

β̂ = arg min

n∑
i=1

L(Zi, β),

where L is the loss function. Boosting is a progressive procedure that iteratively builds up the

solution:

(ĵ, ĝ) = arg min
j,g

∑
i

L(Zi, β̂
t + g1j)

β̂t+1 = β̂t + ĝ1ĵ

ε−Boosting has the similar procedure, but using a fixed step instead:

(ĵ, ĝ) = arg min
j,s=±ε

∑
i

L(Zi, β̂
t + s1j)

β̂t+1 = β̂t + ŝ1ĵ

10.5.2 General Lasso

β̂(λ) = arg min
β

Γ(β, λ) =
∑
i

L(Zi, β) + λ‖β‖1
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10.5.3 The Boosting Lasso Algorithm

Algorithm 9 Boosting Lasso Procedure

1: Step 1 (Initialization). Given Data Zi = (Yi, Xi), i = 1, . . . , n and a small stepsize constant
ε > 0 and a small tolerance parameter ξ > 0, take and initial forward step:

(ĵ, ŝ) = arg min
j,s=±ε

∑
i

L(Zi, s1j)

β̂0 = ŝ1ĵ

Then calculate the initial regularization parameter

λ0 =
1

ε
(
∑
i

L(Zi, 0)−
∑
i

L(Zi, β̂
0))

Set the active set index set I0
A = {ĵ}. Set t = 0.

2: Step 2 (Backward and Forward steps). Find the ”backward” step that leads to the minimal
empirical loss:

ĵ = arg min
∑
i

L(Zi, β̂
t + sj1j), where sj = −sign(β̂t)ε

Take the step if it leads to a decrease of moderate size in the Lasso Loss, otherwise force a
forward step and relax λ if necessary: If Γ(β̂t + ŝĵ1j , λ

t)− Γ(β̂t, λt) ≤ −ξ, then

β̂t+1 = β̂t + ŝĵ1j , λ
t+1 = λt.

Otherwise,

(ĵ, ŝ) = arg min
j,s=±ε

∑
i

L(Zi, β̂
t + s1j)

λt+1 = min{λt, 1

ε
(
∑
i

L(Zi, β̂
(t))−

∑
i

L(Zi, β̂
t+1)− ξ)

It+1
A = ItA ∪ {ĵ}

3: Step 3 (Iteration). Increase t by one and repeat Step 2 and 3. Step when λt ≤ 0.

ÚÚÚnnn7. 1. For any λ ≥ 0, if there exists j and s with |s| = ε such that Γ(s1j , λ) ≤ Γ(0, λ), we

have λ0 ≥ λ.

2. For any t, we have Γ(β̂t+1, λt+1) ≤ Γ(β̂t, λt+1)− ξ.

3. For ξ ≥ 0 and any t such that λt+1 < λt, we have Γ(β̂t± ε1j , λt) > Γ(β̂t, λt)− ξ for every

j and ‖β̂t+1‖1 = ‖β̂t‖1 + ε.

Remark: Lemma (7) (1) guarantees that it is safe for BLasso to start with an initial λ0 which

is the largest λ such that would allow an ε step away from 0. Lemma (7) (2) says that for each

value of λ, BLasso performs coordinate descent until there is no descent step. Then, by Lemma

(7) (3), the value of λ is reduced and a forward step is forced.
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Proof. 1. If there exists λ and j with |s| = ε such that

Γ(s1j ;λ) ≤ Γ(0;λ),

then we have ∑
i

L(Zi; s1j) + λε ≤
∑
i

L(Zi; 0).

Therefore

λ ≤ 1

ε
{
∑
i

L(Zi; 0)−
∑
i

L(Zi, s1j)}

≤ 1

ε
{
∑
i

L(Zi; 0)− min
j,|s|=ε

∑
i

L(Zi, s1j)}

=
1

ε
{
∑
i

L(Zi; 0)−
∑
i

L(Zi, β̂
0)}

= λ0

2. Since a backward step is only taken when Γ(β̂t+1;λ(t)) < Γ(β̂t−ξ) and λt+1 = λt, we only

need to consider forward steps. When a forward step is forced, if Γ(β̂t+1;λt+1) > Γ(β̂t;λt+1)−ξ,

then

∑
i

L(Zi, β̂
t+1) + λt+1‖β̂t+1‖1 >

∑
i

L(Zi, β̂
t) + λt+1‖β̂t‖1 − ξ

equivalently,

λt+1‖β̂t‖1 − λt+1‖β̂t+1‖1 >
∑
i

L(Zi, β̂
t)−

∑
i

L(Zi, β̂
t+1)− ξ

λt+1ε >
∑
i

L(Zi, β̂
t)−

∑
i

L(Zi, β̂
t+1)− ξ

λt+1 >
1

ε
(
∑
i

L(Zi, β̂
t)−

∑
i

L(Zi, β̂
t+1)− ξ)

which contradicts the algorithm.

3. Since λt+1 < λt and λ cannot be relaxed by a backward step, we immediately have

‖β̂t+1‖1 = ‖β̂t‖+ ε (or else β can be obtained via a backward step). Then from

λt+1 =
1

ε
(
∑
i

L(Zi, β̂
t)−

∑
i

L(Zi, β̂
t+1)− ξ)
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we have

λt+1(‖βt+1‖1 − ‖βt‖1) =
∑
i

L(Zi, β̂
t)−

∑
i

L(Zi, β̂
t+1)− ξ

∑
i

L(Zi, β̂
t+1) + λt+1‖βt+1‖1 =

∑
i

L(Zi, β̂
t) + λt+1‖βt‖1)− ξ

∑
i

L(Zi, β̂
t+1) + λt‖βt+1‖1 =

∑
i

L(Zi, β̂
t) + λt‖βt+1‖1 + λt+1‖βt‖1 − λt+1‖βt+1‖1 − ξ

=
∑
i

L(Zi, β̂
t) + λt‖βt‖1 + λtε+ λt+1‖βt‖1 − λt+1‖βt‖1 − λt+1ε− ξ

=
∑
i

L(Zi, β̂
t) + λt‖βt‖1 + λtε− λt+1ε− ξ

>
∑
i

L(Zi, β̂
t) + λt‖βt‖1 − ξ

Note that

∑
i

L(Zi, β̂
t+1) + λt‖βt+1‖1 = min

j,|s|=ε

∑
i

L(Zi, β̂
t + s1j) + λt‖βt+1‖1

≤
∑
i

L(Zi, β̂
t ± ε1j) + λt‖βt+1‖1

So we have

Γ(β̂t ± ε1j , λt) > Γ(β̂t, λt)− ξ for every j

½½½nnn38. For a finite base learners and ξ = o(ε), if
∑
L(Zi, β) is strongly convex with bounded

second derivatives in β then as ε→ 0, the Blasso path converges to the Lasso path uniformly.

Note that strong convexity and bounded second derivatives imply that M ≥ m > 0:

mI 4 ∆2
∑

L 4MI
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